Shanhui Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2433580/shanhui-fan-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

268 155 25,144 79 h-index g-index citations papers 7.82 300 10 32,795 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
268	Lineshape study of optical force spectra on resonant structures <i>Optics Express</i> , 2022 , 30, 6142-6160	3.3	
267	Efficient method for accelerating line searches in adjoint optimization of photonic devices by combining Schur complement domain decomposition and Born series expansions <i>Optics Express</i> , 2022 , 30, 6413-6424	3.3	0
266	Protecting ice from melting under sunlight via radiative cooling Science Advances, 2022, 8, eabj9756	14.3	9
265	Prospects and applications of photonic neural networks. Advances in Physics: X, 2022, 7,	5.1	6
264	Tunable Frequency Filter Based on Twisted Bilayer Photonic Crystal Slabs. ACS Photonics, 2022, 9, 800-8	80653	3
263	Spectral emissivity modeling in multi-resonant systems using coupled-mode theory <i>Optics Express</i> , 2022 , 30, 9463-9472	3.3	0
262	Observation of Weyl exceptional rings in thermal diffusion <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2110018119	11.5	1
261	Nighttime electric power generation at a density of 50 mW/m2 via radiative cooling of a photovoltaic cell. <i>Applied Physics Letters</i> , 2022 , 120, 143901	3.4	1
260	Concentrated radiative cooling and its constraint from reciprocity <i>Optics Express</i> , 2022 , 30, 275-285	3.3	1
259	Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs <i>Science Advances</i> , 2022 , 8, eabm4308	14.3	9
258	Temporal modulation brings metamaterials into new era. Light: Science and Applications, 2022, 11,	16.7	1
257	Exterior tuning and switching of non-equilibrium Casimir force. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2021 , 38, 151	1.7	1
256	Adaptive four-level modeling of laser cooling of solids. <i>Applied Physics Letters</i> , 2021 , 119, 181107	3.4	O
255	Subambient daytime radiative cooling textile based on nanoprocessed silk. <i>Nature Nanotechnology</i> , 2021 ,	28.7	28
254	Shockley-Queisser analysis of the temperature-efficiency correlation of solar cells in the presence of non-radiative heat transfer: erratum. <i>Optics Express</i> , 2021 , 29, 39173	3.3	
253	Topological complex-energy braiding of non-Hermitian bands. <i>Nature</i> , 2021 , 598, 59-64	50.4	11
252	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. <i>Nature Communications</i> , 2021 , 12, 6122	17.4	17

(2021-2021)

251	Electron Pulse Compression with Optical Beat Note. <i>Physical Review Letters</i> , 2021 , 127, 164802	7.4	1
250	A perspective on the pathway toward full wave simulation of large area metalenses. <i>Applied Physics Letters</i> , 2021 , 119, 150502	3.4	3
249	Transforming heat transfer with thermal metamaterials and devices. <i>Nature Reviews Materials</i> , 2021 , 6, 488-507	73.3	68
248	Generating arbitrary topological windings of a non-Hermitian band. <i>Science</i> , 2021 , 371, 1240-1245	33.3	35
247	Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators. <i>Optica</i> , 2021 , 8, 415	8.6	6
246	Wide wavelength-tunable narrow-band thermal radiation from moir[patterns. <i>Applied Physics Letters</i> , 2021 , 118, 131111	3.4	5
245	Theory for Twisted Bilayer Photonic Crystal Slabs. <i>Physical Review Letters</i> , 2021 , 126, 136101	7.4	17
244	Arbitrary linear transformations for photons in the frequency synthetic dimension. <i>Nature Communications</i> , 2021 , 12, 2401	17.4	7
243	Correction to Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices (IACS Photonics, 2021 , 8, 1505-1505	6.3	1
242	Control of non-equilibrium Casimir force. <i>Applied Physics Letters</i> , 2021 , 118, 144001	3.4	O
241	Effect of Coulomb interaction on the transient optical response of electrons in field-coupled quantum dots. <i>Physical Review A</i> , 2021 , 103,	2.6	2
240	Single Gyrotropic Particle as a Heat Engine. <i>ACS Photonics</i> , 2021 , 8, 1623-1629	6.3	1
239	Photonic Modal Circulator Using Temporal Refractive-Index Modulation with Spatial Inversion Symmetry. <i>Physical Review Letters</i> , 2021 , 126, 193901	7.4	3
238	Deep-Subwavelength Thermal Switch via Resonant Coupling in Monolayer Hexagonal Boron Nitride. <i>Physical Review Applied</i> , 2021 , 15,	4.3	6
237	Quantum Entanglement and Modulation Enhancement of Free-Electron-Bound-Electron Interaction. <i>Physical Review Letters</i> , 2021 , 126, 233402	7.4	17
236	Isotropic topological second-order spatial differentiator operating in transmission mode. <i>Optics Letters</i> , 2021 , 46, 3247-3250	3	7
235	Controllable finite ultra-narrow quality-factor peak in a perturbed Dirac-cone band structure of a photonic-crystal slab. <i>Applied Physics Letters</i> , 2021 , 119, 031105	3.4	4
234	Perfect RGB-IR Color Routers for Sub-Wavelength Size CMOS Image Sensor Pixels. <i>Advanced Photonics Research</i> , 2021 , 2, 2000048	1.9	5

233	Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. <i>Nature Nanotechnology</i> , 2021 , 16, 153-158	28.7	132
232	Nighttime Radiative Cooling for Water Harvesting from Solar Panels. ACS Photonics, 2021, 8, 269-275	6.3	14
231	Photonic arbitrary linear transformations in the frequency synthetic dimension 2021,		1
230	Self-Focused Thermal Emission and Holography Realized by Mesoscopic Thermal Emitters. <i>ACS Photonics</i> , 2021 , 8, 497-504	6.3	6
229	Dynamic band structure measurement in the synthetic space. Science Advances, 2021, 7,	14.3	9
228	Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. <i>Nano Letters</i> , 2021 , 21, 1493-1499	11.5	34
227	Topological optical differentiator. <i>Nature Communications</i> , 2021 , 12, 680	17.4	36
226	Atomic-Scale Control of Coherent Thermal Radiation. ACS Photonics, 2021, 8, 872-878	6.3	4
225	Inverse Design of Plasma Metamaterial Devices for Optical Computing. <i>Physical Review Applied</i> , 2021 , 16,	4.3	4
224	Synthetic frequency dimensions in dynamically modulated ring resonators. <i>APL Photonics</i> , 2021 , 6, 071	10522	5
223	Inverse Design of Metasurfaces Based on Coupled-Mode Theory and Adjoint Optimization. <i>ACS Photonics</i> , 2021 , 8, 2265-2273	6.3	12
222	Shockley-Queisser analysis of the temperature-efficiency correlation of solar cells in the presence of non-radiative heat transfer. <i>Optics Express</i> , 2021 , 29, 27554-27561	3.3	2
221	Violating Kirchhoff Law of Thermal Radiation in Semitransparent Structures. <i>ACS Photonics</i> , 2021 , 8, 2417-2424	6.3	8
220	Generation of guided space-time wave packets using multilevel indirect photonic transitions in integrated photonics. <i>Physical Review Research</i> , 2021 , 3,	3.9	2
219	Configurable Phase Transitions in a Topological Thermal Material. <i>Physical Review Letters</i> , 2021 , 127, 105901	7.4	7
218	Structured 3D linear space-time light bullets by nonlocal nanophotonics. <i>Light: Science and Applications</i> , 2021 , 10, 160	16.7	6
217	High-performance photonic transformers for DC voltage conversion. <i>Nature Communications</i> , 2021 , 12, 4684	17.4	1
216	Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. <i>Physical Review B</i> , 2021 , 104,	3.3	4

(2020-2021)

215	Thermodynamics of Light Management in Near-Field Thermophotovoltaics. <i>Physical Review Applied</i> , 2021 , 16,	4.3	3
214	Universal Behavior of the Scattering Matrix Near Thresholds in Photonics <i>Physical Review Letters</i> , 2021 , 127, 277401	7.4	
213	Reaching the Ultimate Efficiency of Solar Energy Harvesting with a Nonreciprocal Multijunction Solar Cell <i>Nano Letters</i> , 2021 ,	11.5	8
212	Efficient and robust wireless power transfer based on parity-time symmetry 2020,		1
211	Homotopy characterization of non-Hermitian Hamiltonians. <i>Physical Review B</i> , 2020 , 101,	3.3	26
210	Inverse Design of Photonic Crystals through Automatic Differentiation. ACS Photonics, 2020, 7, 1729-174	461.3	36
209	Meron Spin Textures in Momentum Space. <i>Physical Review Letters</i> , 2020 , 124, 106103	7.4	22
208	Inverse-designed non-reciprocal pulse router for chip-based LiDAR. <i>Nature Photonics</i> , 2020 , 14, 369-374	33.9	73
207	Experimental demonstration of acoustic semimetal with topologically charged nodal surface. <i>Science Advances</i> , 2020 , 6, eaav2360	14.3	24
206	Nonreciprocal Metamaterial Obeying Time-Reversal Symmetry. <i>Physical Review Letters</i> , 2020 , 124, 2574	9 34	4
205	Fundamental Limits of the Dew-Harvesting Technology. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2020 , 24, 43-52	3.7	12
204	Photonic Refrigeration from Time-Modulated Thermal Emission. <i>Physical Review Letters</i> , 2020 , 124, 077	402	9
203	Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals. <i>Nano Letters</i> , 2020 , 20, 1923-	·19 <i>2</i> ₅ 7	51
202	Nonreciprocal radiative heat transfer between two planar bodies. <i>Physical Review B</i> , 2020 , 101,	3.3	9
201	Compact Incoherent Image Differentiation with Nanophotonic Structures. ACS Photonics, 2020, 7, 338-3	4 533	21
200	Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces. <i>Nature Communications</i> , 2020 , 11, 674	17.4	29
199	Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. <i>Light: Science and Applications</i> , 2020 , 9, 68	16.7	33
198	Universal programmable photonic architecture for quantum information processing. <i>Physical Review A</i> , 2020 , 101,	2.6	6

197	Nonreciprocity in Bianisotropic Systems with Uniform Time Modulation. <i>Physical Review Letters</i> , 2020 , 125, 266102	7.4	16
196	Maximal nighttime electrical power generation via optimal radiative cooling. <i>Optics Express</i> , 2020 , 28, 25460-25470	3.3	20
195	Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann-Schwinger formalism. <i>Optics Letters</i> , 2020 , 45, 595-598	3	2
194	Nonreciprocal Devices in Silicon Photonics. <i>Optics and Photonics News</i> , 2020 , 31, 38	1.9	1
193	Squeeze free space with nonlocal flat optics. <i>Optica</i> , 2020 , 7, 1133	8.6	14
192	Design of a multichannel photonic crystal dielectric laser accelerator. <i>Photonics Research</i> , 2020 , 8, 1586	6	5
191	Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons. <i>Photonics Research</i> , 2020 , 8, B8	6	9
190	Scattering of a single plasmon polariton by multiple atoms for in-plane control of light. <i>Nanophotonics</i> , 2020 , 10, 579-587	6.3	О
189	CHEMICAL POTENTIAL OF PHOTONS AND ITS IMPLICATIONS FOR CONTROLLING RADIATIVE HEAT TRANSFER. <i>Annual Review of Heat Transfer</i> , 2020 , 23, 397-431	2.7	6
188	Controlling the dopant profile for SRH suppression at low current densities in 1 330 nm GalnAsP light-emitting diodes. <i>Applied Physics Letters</i> , 2020 , 116, 203503	3.4	1
187	Integrated near-field thermo-photovoltaics for heat recycling. <i>Nature Communications</i> , 2020 , 11, 2545	17.4	42
186	A single photonic cavity with two independent physical synthetic dimensions. <i>Science</i> , 2020 , 367, 59-64	33.3	87
185	Radiative Thermal Router Based on Tunable Magnetic Weyl Semimetals. ACS Photonics, 2020, 7, 3257-3	2 6.3	15
184	Integrated Nonreciprocal Photonic Devices With Dynamic Modulation. <i>Proceedings of the IEEE</i> , 2020 , 108, 1759-1784	14.3	13
183	Higher-order topological insulators in synthetic dimensions. <i>Light: Science and Applications</i> , 2020 , 9, 131	16.7	27
182	Single-Photon Transport in a Topological Waveguide from a Dynamically Modulated Photonic System. <i>Physical Review Applied</i> , 2020 , 14,	4.3	1
181	Inference in artificial intelligence with deep optics and photonics. <i>Nature</i> , 2020 , 588, 39-47	50.4	114
180	Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. <i>Science</i> , 2020 , 370, 786-791	33.3	110

179	Theoretical constraints on reciprocal and non-reciprocal many-body radiative heat transfer. <i>Physical Review B</i> , 2020 , 102,	3.3	5
178	Inverse Design of Lightweight Broadband Reflector for Relativistic Lightsail Propulsion. <i>ACS Photonics</i> , 2020 , 7, 2350-2355	6.3	19
177	Tutorial on Electromagnetic Nonreciprocity and its Origins. <i>Proceedings of the IEEE</i> , 2020 , 108, 1684-172	27 4.3	35
176	Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. <i>Advanced Materials</i> , 2020 , 32, e1906751	24	68
175	Experimental demonstration of silicon photonic devices optimized by a flexible and deterministic pixel-by-pixel technique. <i>Applied Physics Letters</i> , 2020 , 117, 071104	3.4	2
174	Beating absorption in solid-state high harmonics. <i>Communications Physics</i> , 2020 , 3,	5.4	6
173	Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2020 , 26, 1-12	3.8	60
172	Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear paritylime symmetric circuit. <i>Nature Electronics</i> , 2020 , 3, 273-279	28.4	27
171	Sub-Wavelength Passive Optical Isolators Using Photonic Structures Based on Weyl Semimetals. <i>Advanced Optical Materials</i> , 2020 , 8, 2000100	8.1	26
170	Generating Light from Darkness. <i>Joule</i> , 2019 , 3, 2679-2686	27.8	73
170 169	Generating Light from Darkness. <i>Joule</i> , 2019 , 3, 2679-2686 High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3		73 6
169	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3 Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a	4 9 13	6
169 168	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3 Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. <i>Physical Review Applied</i> , 2019 , 11, Self-sustaining thermophotonic circuits. <i>Proceedings of the National Academy of Sciences of the</i>	4.3	5
169 168 167	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3 Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. <i>Physical Review Applied</i> , 2019 , 11, Self-sustaining thermophotonic circuits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11596-11601 Experimental demonstration of energy harvesting from the sky using the negative illumination	4.3	654
169 168 167	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3 Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. <i>Physical Review Applied</i> , 2019 , 11, Self-sustaining thermophotonic circuits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11596-11601 Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. <i>Applied Physics Letters</i> , 2019 , 114, 161102 Connection of temporal coupled-mode-theory formalisms for a resonant optical system and its	4-3 11.5	65423
169168167166165	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. <i>ACS Photonics</i> , 2019 , 6, 339-3 Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. <i>Physical Review Applied</i> , 2019 , 11, Self-sustaining thermophotonic circuits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11596-11601 Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. <i>Applied Physics Letters</i> , 2019 , 114, 161102 Connection of temporal coupled-mode-theory formalisms for a resonant optical system and its time-reversal conjugate. <i>Physical Review A</i> , 2019 , 99, Photonic Gauge Potential in One Cavity with Synthetic Frequency and Orbital Angular Momentum	4.3 11.5 3.4 2.6	6 5 4 23 21

161	Penetration Depth Reduction with Plasmonic Metafilms. ACS Photonics, 2019, 6, 2049-2055	6.3	2
160	Forward-Mode Differentiation of Maxwell Equations. ACS Photonics, 2019, 6, 3010-3016	6.3	20
159	Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson equation in a Green function formalism: Part I Implementation with the method of discrete dipole approximation. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2378	1.7	8
158	Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson equation in a Green function formalism: Part II Implementation using standard electromagnetic solvers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2387	1.7	8
157	Casimir force between two plasmonic metallic plates from a real frequency perspective. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2981	1.7	1
156	Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition. <i>Optics Express</i> , 2019 , 27, 20711-20719	3.3	4
155	Nighttime radiative cooling in hot and humid climates. <i>Optics Express</i> , 2019 , 27, 31587-31598	3.3	33
154	Silicon nitride waveguide as a power delivery component for on-chip dielectric laser accelerators. <i>Optics Letters</i> , 2019 , 44, 335-338	3	6
153	Compact dynamic optical isolator based on tandem phase modulators. <i>Optics Letters</i> , 2019 , 44, 2240-22	43	12
152	Near-complete violation of Kirchhoff's law of thermal radiation with a 0.3 T magnetic field. <i>Optics Letters</i> , 2019 , 44, 4203-4206	3	40
151	Radiative Cooling: Harvesting the Coldness of the Universe. <i>Optics and Photonics News</i> , 2019 , 30, 32	1.9	20
150	Doubly resonant (2) nonlinear photonic crystal cavity based on a bound state in the continuum. <i>Optica</i> , 2019 , 6, 1039	8.6	44
149	Practical efficiency limits of electroluminescent cooling 2019,		1
148	Relation between photon thermal Hall effect and persistent heat current in nonreciprocal radiative heat transfer. <i>Physical Review B</i> , 2019 , 100,	3.3	8
147	Wave physics as an analog recurrent neural network. <i>Science Advances</i> , 2019 , 5, eaay6946	14.3	89
146	Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space. <i>Joule</i> , 2019 , 3, 101-11	6 7.8	71
145	Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation. <i>Physical Review A</i> , 2019 , 99,	2.6	22
144	Arbitrary Polarization Conversion with a Photonic Crystal Slab. <i>Advanced Optical Materials</i> , 2019 , 7, 180°	18.53	15

143	Electronically programmable photonic molecule. <i>Nature Photonics</i> , 2019 , 13, 36-40	33.9	77
142	Experimental Demonstration of Dynamical Input Isolation in Nonadiabatically Modulated Photonic Cavities. <i>ACS Photonics</i> , 2019 , 6, 162-169	6.3	10
141	Thermal meta-device in analogue of zero-index photonics. <i>Nature Materials</i> , 2019 , 18, 48-54	27	112
140	Theory of many-body radiative heat transfer without the constraint of reciprocity. <i>Physical Review B</i> , 2018 , 97,	3.3	38
139	Nonreciprocal Optical Dissipation Based on Direction-Dependent Rabi Splitting. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-7	3.8	10
138	Thermodynamic limits of energy harvesting from outgoing thermal radiation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3609-E3615	11.5	46
137	Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling. <i>Physical Review Letters</i> , 2018 , 120, 063901	7.4	47
136	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. <i>Nature Sustainability</i> , 2018 , 1, 105-112	22.1	206
135	Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. <i>Physical Review B</i> , 2018 , 97,	3.3	34
134	Enhancing Mo:BiVO4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer. <i>Advanced Energy Materials</i> , 2018 , 8, 1701765	21.8	60
133	Training of photonic neural networks through in situ backpropagation and gradient measurement. <i>Optica</i> , 2018 , 5, 864	8.6	155
132	Photonic crystal slab Laplace operator for image differentiation. <i>Optica</i> , 2018 , 5, 251	8.6	102
131	Self-adaptive radiative cooling based on phase change materials. <i>Optics Express</i> , 2018 , 26, A777-A787	3.3	105
130	Enhanced high-harmonic generation from an all-dielectric metasurface. <i>Nature Physics</i> , 2018 , 14, 1006-	1 <u>Q</u> &Q <u>.</u>	132
129	First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis. <i>Applied Physics Letters</i> , 2018 , 113, 041106	3.4	14
128	Nanophotonic control of thermal radiation for energy applications [Invited]. <i>Optics Express</i> , 2018 , 26, 15995-16021	3.3	151
127	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. <i>Advanced Materials</i> , 2018 , 30, e1802152	24	181
126	Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery. <i>Nano Letters</i> , 2018 , 18, 5224	-52390	31

125	MESH: A free electromagnetic solver for far-field and near-field radiative heat transfer for layered periodic structures. <i>Computer Physics Communications</i> , 2018 , 231, 163-172	4.2	19
124	Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. <i>Physical Review A</i> , 2018 , 97,	2.6	22
123	Synthetic dimension in photonics. <i>Optica</i> , 2018 , 5, 1396	8.6	133
122	Optimization of Multilayer Optical Films with a Memetic Algorithm and Mixed Integer Programming. <i>ACS Photonics</i> , 2018 , 5, 684-691	6.3	70
121	Zero-Index Bound States in the Continuum. <i>Physical Review Letters</i> , 2018 , 121, 263901	7.4	55
120	Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices. ACS Photonics, 2018 , 5, 4781-	47837	85
119	Design of a tapered slot waveguide dielectric laser accelerator for sub-relativistic electrons. <i>Optics Express</i> , 2018 , 26, 22801-22815	3.3	4
118	Unidirectional light transport in dynamically modulated waveguides. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
117	Photonic thermal management of coloured objects. <i>Nature Communications</i> , 2018 , 9, 4240	17.4	80
116	A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. <i>Science Advances</i> , 2018 , 4, eaat2774	14.3	41
115	Isotropic wavevector domain image filters by a photonic crystal slab device. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 1685-1691	1.8	20
114	Pulse shortening in an actively mode-locked laser with parity-time symmetry. <i>APL Photonics</i> , 2018 , 3, 086103	5.2	13
113	On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators. <i>Physical Review Applied</i> , 2018 , 9,	4.3	24
112	Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics, 2017, 4, 626-630	6.3	333
111	Planar, Ultrathin, Subwavelength Spectral Light Separator for Efficient, Wide-Angle Spectral Imaging. <i>ACS Photonics</i> , 2017 , 4, 525-535	6.3	9
110	Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation. <i>Physical Review A</i> , 2017 , 95,	2.6	6
109	Universal modal radiation laws for all thermal emitters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4336-4341	11.5	47
108	Plasmonic computing of spatial differentiation. <i>Nature Communications</i> , 2017 , 8, 15391	17.4	167

107	Exact solution to the steady-state dynamics of a periodically modulated resonator. <i>APL Photonics</i> , 2017 , 2, 076101	5.2	31
106	Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. <i>Nature</i> , 2017 , 546, 387-	3 9 6.4	292
105	Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion. ACS Nano, 2017, 11, 3001-3009	16.7	45
104	A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics, 2017, 4, 774-782	6.3	166
103	High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy, 2017, 41, 344-	-3 <u>15</u> ,01	79
102	Topologically Protected Complete Polarization Conversion. <i>Physical Review Letters</i> , 2017 , 119, 167401	7.4	50
101	High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. <i>Journal of Applied Physics</i> , 2017 , 122, 143104	2.5	43
100	Warming up human body by nanoporous metallized polyethylene textile. <i>Nature Communications</i> , 2017 , 8, 496	17.4	162
99	Sub-ambient non-evaporative fluid cooling with the sky. <i>Nature Energy</i> , 2017 , 2,	62.3	218
98	Theory of solar cell light trapping through a nonequilibrium Green's function formulation of Maxwell's equations. <i>Physical Review B</i> , 2017 , 96,	3.3	10
97	Thermal Photonics and Energy Applications. <i>Joule</i> , 2017 , 1, 264-273	27.8	90
96	A dual-mode textile for human body radiative heating and cooling. <i>Science Advances</i> , 2017 , 3, e1700895	5 14.3	222
95	Optical Circulation and Isolation Based on Indirect Photonic Transitions of Guided Resonance Modes. <i>ACS Photonics</i> , 2017 , 4, 1639-1645	6.3	53
94	Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces. <i>Physical Review Letters</i> , 2017 , 118, 203901	7.4	73
93	Method for computationally efficient design of dielectric laser accelerator structures. <i>Optics Express</i> , 2017 , 25, 15414-15427	3.3	23
92	Radiative human body cooling by nanoporous polyethylene textile. <i>Science</i> , 2016 , 353, 1019-1023	33.3	464
91	Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. <i>Optica</i> , 2016 , 3, 1014	8.6	57
90	Near-Field Enhanced Negative Luminescent Refrigeration. <i>Physical Review Applied</i> , 2016 , 6,	4.3	40

89	Thermal-to-electrical energy conversion by diodes under negative illumination. <i>Physical Review B</i> , 2016 , 93,	3.3	49
88	Time reversal of a wave packet with temporal modulation of gauge potential. <i>Physical Review B</i> , 2016 , 94,	3.3	13
87	Photonic gauge potential in a system with a synthetic frequency dimension. <i>Optics Letters</i> , 2016 , 41, 741-4	3	119
86	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. <i>Nature Nanotechnology</i> , 2016 , 11, 515-519	28.7	150
85	Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer. <i>ACS Photonics</i> , 2016 , 3, 571-577	6.3	46
84	Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance. <i>Optics Express</i> , 2016 , 24, 29896-29907	3.3	19
83	Multi-frequency finite-difference frequency-domain algorithm for active nanophotonic device simulations. <i>Optica</i> , 2016 , 3, 1256	8.6	27
82	Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. <i>Nature Communications</i> , 2016 , 7, 13731	17.4	114
81	Nonequilibrium Casimir Force with a Nonzero Chemical Potential for Photons. <i>Physical Review Letters</i> , 2016 , 117, 267401	7.4	9
80	Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms. <i>Applied Physics Letters</i> , 2016 , 108, 021110	3.4	47
79	Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. <i>Nature Communications</i> , 2016 , 7, 13729	17.4	371
78	Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme. <i>ACS Photonics</i> , 2016 , 3, 2420-2426	6.3	40
77	Angle-selective perfect absorption with two-dimensional materials. <i>Light: Science and Applications</i> , 2016 , 5, e16052	16.7	70
76	Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials. <i>Physical Review Letters</i> , 2016 , 117, 057401	7.4	101
75	Persistent Directional Current at Equilibrium in Nonreciprocal Many-Body Near Field Electromagnetic Heat Transfer. <i>Physical Review Letters</i> , 2016 , 117, 134303	7.4	76
74	Three-Dimensional Dynamic Localization of Light from a Time-Dependent Effective Gauge Field for Photons. <i>Physical Review Letters</i> , 2015 , 114, 243901	7.4	26
73	Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12282-7	11.5	301
72	Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime. <i>Physical Review A</i> , 2015 , 92,	2.6	20

71	Analog of superradiant emission in thermal emitters. <i>Physical Review B</i> , 2015 , 92,	3.3	20
70	Limitations of nonlinear optical isolators due to dynamic reciprocity. <i>Nature Photonics</i> , 2015 , 9, 388-392	2 33.9	246
69	Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. <i>Physical Review B</i> , 2015 , 91,	3.3	91
68	Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. <i>ACS Photonics</i> , 2014 , 1, 347-353	6.3	389
67	Light management for photovoltaics using high-index nanostructures. <i>Nature Materials</i> , 2014 , 13, 451-6	5 0 -7	670
66	Non-reciprocal phase shift induced by an effective magnetic flux for light. <i>Nature Photonics</i> , 2014 , 8, 701-705	33.9	214
65	Photonic Aharonov-Bohm effect in photon-phonon interactions. <i>Nature Communications</i> , 2014 , 5, 3225	17.4	96
64	Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2014 , 132, 3-11	2.1	59
63	Progress in 2D photonic crystal Fano resonance photonics. <i>Progress in Quantum Electronics</i> , 2014 , 38, 1-74	9.1	165
62	Near-complete violation of detailed balance in thermal radiation. <i>Physical Review B</i> , 2014 , 90,	3.3	82
61	Passive radiative cooling below ambient air temperature under direct sunlight. <i>Nature</i> , 2014 , 515, 540-4	4 50.4	1183
60	Radiative cooling of solar cells. <i>Optica</i> , 2014 , 1, 32	8.6	285
59	ParityEime-symmetric whispering-gallery microcavities. <i>Nature Physics</i> , 2014 , 10, 394-398	16.2	1394
58	Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. <i>Physical Review Letters</i> , 2013 , 111, 203901	7.4	66
57	Transparent and conductive paper from nanocellulose fibers. <i>Energy and Environmental Science</i> , 2013 , 6, 513-518	35.4	375
56	Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. <i>Nano Letters</i> , 2013 , 13, 1457-61	11.5	507
55	Upper bound on the modal material loss rate in plasmonic and metamaterial systems. <i>Physical Review Letters</i> , 2013 , 110, 183901	7.4	31
54	Fundamental bounds on decay rates in asymmetric single-mode optical resonators. <i>Optics Letters</i> , 2013 , 38, 100-2	3	54

53	Optical pulling force and conveyor belt effect in resonator-waveguide system. <i>Optics Letters</i> , 2013 , 38, 3264-7	3	24
52	Wireless power transfer in the presence of metallic plates: Experimental results. <i>AIP Advances</i> , 2013 , 3, 062102	1.5	25
51	Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes. <i>Applied Physics Letters</i> , 2013 , 102, 103104	3.4	33
50	Color-preserving daytime radiative cooling. <i>Applied Physics Letters</i> , 2013 , 103, 223902	3.4	113
49	Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell equations solvers. <i>Journal of Computational Physics</i> , 2012 , 231, 3406-3431	4.1	92
48	S4 : A free electromagnetic solver for layered periodic structures. <i>Computer Physics Communications</i> , 2012 , 183, 2233-2244	4.2	380
47	Few-Photon Single-Atom Cavity QED With Input-Output Formalism in Fock Space. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 1754-1762	3.8	23
46	Comment on "Nonreciprocal light propagation in a silicon photonic circuit". <i>Science</i> , 2012 , 335, 38; author reply 38	33.3	93
45	Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. <i>Nature Photonics</i> , 2012 , 6, 782-787	33.9	664
44	Photonic Aharonov-Bohm effect based on dynamic modulation. <i>Physical Review Letters</i> , 2012 , 108, 153	9 9 .4	240
44	Photonic Aharonov-Bohm effect based on dynamic modulation. <i>Physical Review Letters</i> , 2012 , 108, 153 Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901	9 9 .14 7.4	2 40 412
	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical</i>	, ·	
43	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901 From electromagnetically induced transparency to superscattering with a single structure: a	7.4	412
43	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901 From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. <i>Physical Review Letters</i> , 2012 , 108, 083902 Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a	7·4 7·4	412
43 42 41	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901 From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. <i>Physical Review Letters</i> , 2012 , 108, 083902 Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. <i>Physical Review A</i> , 2012 , 85, Thermodynamic upper bound on broadband light coupling with photonic structures. <i>Physical</i>	7·4 7·4 2.6	412 159 43
43 42 41 40	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901 From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. <i>Physical Review Letters</i> , 2012 , 108, 083902 Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. <i>Physical Review A</i> , 2012 , 85, Thermodynamic upper bound on broadband light coupling with photonic structures. <i>Physical Review Letters</i> , 2012 , 109, 173901 Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of	7·4 7·4 2.6 7·4	412 159 43
43 42 41 40 39	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901 From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. <i>Physical Review Letters</i> , 2012 , 108, 083902 Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. <i>Physical Review A</i> , 2012 , 85, Thermodynamic upper bound on broadband light coupling with photonic structures. <i>Physical Review Letters</i> , 2012 , 109, 173901 Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency. <i>Physical Review A</i> , 2012 , 86,	7·4 7·4 2.6 7·4	412 159 43 55 16

(2004-2010)

35	Temporal Coupled-Mode Theory for Fano Resonance in Light Scattering by a Single Obstacle Journal of Physical Chemistry C, 2010 , 114, 7324-7329	3.8	100
34	Thermal rectification through vacuum. <i>Physical Review Letters</i> , 2010 , 104, 154301	7.4	321
33	Fundamental limit of nanophotonic light trapping in solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 17491-6	11.5	596
32	Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. <i>Physical Review A</i> , 2010 , 82,	2.6	158
31	Sensitivity enhancement in photonic crystal slab biosensors. <i>Optics Express</i> , 2010 , 18, 22702-14	3.3	134
30	Temporal coupled-mode theory for resonant apertures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 1947	1.7	56
29	Integrated Nonmagnetic Optical Isolators Based on Photonic Transitions \$^{ast}\$. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 459-466	3.8	27
28	Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. <i>Physical Review A</i> , 2009 , 79,	2.6	102
27	Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions. <i>Applied Physics Letters</i> , 2009 , 94, 171116	3.4	52
26	Planar metallic nanoscale slit lenses for angle compensation. <i>Applied Physics Letters</i> , 2009 , 95, 071112	3.4	54
25	Complete optical isolation created by indirect interband photonic transitions. <i>Nature Photonics</i> , 2009 , 3, 91-94	33.9	713
24	Modal analysis and coupling in metal-insulator-metal waveguides. <i>Physical Review B</i> , 2009 , 79,	3.3	100
23	One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. <i>Physical Review Letters</i> , 2008 , 100, 023902	7.4	343
22	Photonic crystal theory 2008 , 431-454		3
21	Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. <i>Physical Review Letters</i> , 2007 , 98, 153003	7.4	300
20	One-way total reflection with one-dimensional magneto-optical photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 121133	3.4	148
19	Optical circulators in two-dimensional magneto-optical photonic crystals. <i>Optics Letters</i> , 2005 , 30, 1989)-91	204
18	Omnidirectional resonance in a metaldielectrichetal geometry. <i>Applied Physics Letters</i> , 2004 , 84, 4421-	44243	91

17	Time reversal of light with linear optics and modulators. <i>Physical Review Letters</i> , 2004 , 93, 173903	7.4	88
16	Stopping light all optically. <i>Physical Review Letters</i> , 2004 , 92, 083901	7.4	390
15	Method for sensitivity analysis of photonic crystal devices. <i>Optics Letters</i> , 2004 , 29, 2288-90	3	82
14	Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 1511-1518	2	406
13	Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. <i>Applied Physics Letters</i> , 2003 , 82, 1999-2001	3.4	155
12	Nonlinear photonic crystal microdevices for optical integration. <i>Optics Letters</i> , 2003 , 28, 637-9	3	237
11	Temporal coupled-mode theory for the Fano resonance in optical resonators. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2003 , 20, 569-72	1.8	808
10	Analysis of guided resonances in photonic crystal slabs. <i>Physical Review B</i> , 2002 , 65,	3.3	855
9	Theoretical analysis of channel drop tunneling processes. <i>Physical Review B</i> , 1999 , 59, 15882-15892	3.3	163
8	Interband transitions in photonic crystals. <i>Physical Review B</i> , 1999 , 59, 1551-1554	3.3	114
7	Omnidirectional reflection from a one-dimensional photonic crystal. <i>Optics Letters</i> , 1998 , 23, 1573-5	3	392
6	Photonics and thermodynamics concepts in radiative cooling. <i>Nature Photonics</i> ,	33.9	19
5	Deterministic photonic quantum computation in a synthetic time dimension. Optica,	8.6	3
4	Generation of tilted spatiotemporal optical vortices using transmission nodal line. Optica,	8.6	9
3	SpaceTime Metasurfaces for Power Combining of Waves. ACS Photonics,	6.3	6
2	Topological dissipation in a time-multiplexed photonic resonator network. <i>Nature Physics</i> ,	16.2	4
1	Topological Materials for Functional Optoelectronic Devices. <i>Advanced Functional Materials</i> ,2110655	15.6	О