Shanhui Fan

List of Publications by Citations

Source: https://exaly.com/author-pdf/2433580/shanhui-fan-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

268 25,144 155 79 h-index g-index citations papers 7.82 300 10 32,795 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
268	Parity E ime-symmetric whispering-gallery microcavities. <i>Nature Physics</i> , 2014 , 10, 394-398	16.2	1394
267	Passive radiative cooling below ambient air temperature under direct sunlight. <i>Nature</i> , 2014 , 515, 540-4	4 50.4	1183
266	Analysis of guided resonances in photonic crystal slabs. <i>Physical Review B</i> , 2002 , 65,	3.3	855
265	Temporal coupled-mode theory for the Fano resonance in optical resonators. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2003 , 20, 569-72	1.8	808
264	Complete optical isolation created by indirect interband photonic transitions. <i>Nature Photonics</i> , 2009 , 3, 91-94	33.9	713
263	Light management for photovoltaics using high-index nanostructures. <i>Nature Materials</i> , 2014 , 13, 451-6	5 0 -7	670
262	Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. <i>Nature Photonics</i> , 2012 , 6, 782-787	33.9	664
261	Fundamental limit of nanophotonic light trapping in solar cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 17491-6	11.5	596
260	Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. <i>Nano Letters</i> , 2013 , 13, 1457-61	11.5	507
259	Radiative human body cooling by nanoporous polyethylene textile. <i>Science</i> , 2016 , 353, 1019-1023	33.3	464
258	Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. <i>Physical Review Letters</i> , 2012 , 109, 033901	7.4	412
257	Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 1511-1518	2	406
256	Omnidirectional reflection from a one-dimensional photonic crystal. <i>Optics Letters</i> , 1998 , 23, 1573-5	3	392
255	Stopping light all optically. <i>Physical Review Letters</i> , 2004 , 92, 083901	7.4	390
254	Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. <i>ACS Photonics</i> , 2014 , 1, 347-353	6.3	389
253	S4: A free electromagnetic solver for layered periodic structures. <i>Computer Physics Communications</i> , 2012 , 183, 2233-2244	4.2	380
252	Transparent and conductive paper from nanocellulose fibers. <i>Energy and Environmental Science</i> , 2013 , 6, 513-518	35.4	375

(2018-2016)

251	Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. <i>Nature Communications</i> , 2016 , 7, 13729	17.4	371
250	One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. <i>Physical Review Letters</i> , 2008 , 100, 023902	7.4	343
249	Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics, 2017, 4, 626-630	6.3	333
248	Thermal rectification through vacuum. <i>Physical Review Letters</i> , 2010 , 104, 154301	7.4	321
247	Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12282-7	11.5	301
246	Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. <i>Physical Review Letters</i> , 2007 , 98, 153003	7.4	300
245	Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. <i>Nature</i> , 2017 , 546, 387-	3 90 .4	292
244	Radiative cooling of solar cells. <i>Optica</i> , 2014 , 1, 32	8.6	285
243	Superscattering of light from subwavelength nanostructures. <i>Physical Review Letters</i> , 2010 , 105, 01390	1 7.4	262
242	Limitations of nonlinear optical isolators due to dynamic reciprocity. <i>Nature Photonics</i> , 2015 , 9, 388-392	33.9	246
241	Photonic Aharonov-Bohm effect based on dynamic modulation. <i>Physical Review Letters</i> , 2012 , 108, 1539	9 9 :14	240
240	Nonlinear photonic crystal microdevices for optical integration. <i>Optics Letters</i> , 2003 , 28, 637-9	3	237
239	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895	5 14.3	222
238	Sub-ambient non-evaporative fluid cooling with the sky. <i>Nature Energy</i> , 2017 , 2,	62.3	218
237	Non-reciprocal phase shift induced by an effective magnetic flux for light. <i>Nature Photonics</i> , 2014 , 8, 701-705	33.9	214
236	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. <i>Nature Sustainability</i> , 2018 , 1, 105-112	22.1	206
235	Optical circulators in two-dimensional magneto-optical photonic crystals. <i>Optics Letters</i> , 2005 , 30, 1989	-91	204
234	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. <i>Advanced Materials</i> , 2018 , 30, e1802152	24	181

233	Plasmonic computing of spatial differentiation. <i>Nature Communications</i> , 2017 , 8, 15391	17.4	167
232	A Comprehensive Photonic Approach for Solar Cell Cooling. <i>ACS Photonics</i> , 2017 , 4, 774-782	6.3	166
231	Progress in 2D photonic crystal Fano resonance photonics. <i>Progress in Quantum Electronics</i> , 2014 , 38, 1-74	9.1	165
230	Theoretical analysis of channel drop tunneling processes. <i>Physical Review B</i> , 1999 , 59, 15882-15892	3.3	163
229	Warming up human body by nanoporous metallized polyethylene textile. <i>Nature Communications</i> , 2017 , 8, 496	17.4	162
228	From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. <i>Physical Review Letters</i> , 2012 , 108, 083902	7.4	159
227	Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. <i>Physical Review A</i> , 2010 , 82,	2.6	158
226	Training of photonic neural networks through in situ backpropagation and gradient measurement. <i>Optica</i> , 2018 , 5, 864	8.6	155
225	Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. <i>Applied Physics Letters</i> , 2003 , 82, 1999-2001	3.4	155
224	Nanophotonic control of thermal radiation for energy applications [Invited]. <i>Optics Express</i> , 2018 , 26, 15995-16021	3.3	151
223	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11, 515-519	28.7	150
223	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.	28.7	150
	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11, 515-519 One-way total reflection with one-dimensional magneto-optical photonic crystals. Applied Physics	,	
222	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11, 515-519 One-way total reflection with one-dimensional magneto-optical photonic crystals. Applied Physics Letters, 2007, 90, 121133	3.4	148
222	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. <i>Nature Nanotechnology</i> , 2016 , 11, 515-519 One-way total reflection with one-dimensional magneto-optical photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 121133 Sensitivity enhancement in photonic crystal slab biosensors. <i>Optics Express</i> , 2010 , 18, 22702-14	3·4 3·3 8.6	148
222 221 220	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. <i>Nature Nanotechnology</i> , 2016 , 11, 515-519 One-way total reflection with one-dimensional magneto-optical photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 121133 Sensitivity enhancement in photonic crystal slab biosensors. <i>Optics Express</i> , 2010 , 18, 22702-14 Synthetic dimension in photonics. <i>Optica</i> , 2018 , 5, 1396	3.4 3.3 8.6	148 134 133
222 221 220 219	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. <i>Nature Nanotechnology</i> , 2016 , 11, 515-519 One-way total reflection with one-dimensional magneto-optical photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 121133 Sensitivity enhancement in photonic crystal slab biosensors. <i>Optics Express</i> , 2010 , 18, 22702-14 Synthetic dimension in photonics. <i>Optica</i> , 2018 , 5, 1396 Enhanced high-harmonic generation from an all-dielectric metasurface. <i>Nature Physics</i> , 2018 , 14, 1006-Scalable and hierarchically designed polymer film as a selective thermal emitter for	3.4 3.3 8.6	148 134 133

215	Inference in artificial intelligence with deep optics and photonics. <i>Nature</i> , 2020 , 588, 39-47	50.4	114
214	Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. <i>Nature Communications</i> , 2016 , 7, 13731	17.4	114
213	Color-preserving daytime radiative cooling. <i>Applied Physics Letters</i> , 2013 , 103, 223902	3.4	113
212	Thermal meta-device in analogue of zero-index photonics. <i>Nature Materials</i> , 2019 , 18, 48-54	27	112
211	Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. <i>Science</i> , 2020 , 370, 786-791	33.3	110
210	Self-adaptive radiative cooling based on phase change materials. <i>Optics Express</i> , 2018 , 26, A777-A787	3.3	105
209	Photonic crystal slab Laplace operator for image differentiation. <i>Optica</i> , 2018 , 5, 251	8.6	102
208	Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. <i>Physical Review A</i> , 2009 , 79,	2.6	102
207	Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials. <i>Physical Review Letters</i> , 2016 , 117, 057401	7.4	101
206	Temporal Coupled-Mode Theory for Fano Resonance in Light Scattering by a Single Obstacle Journal of Physical Chemistry C, 2010 , 114, 7324-7329	3.8	100
205	Modal analysis and coupling in metal-insulator-metal waveguides. Physical Review B, 2009, 79,	3.3	100
204	Photonic Aharonov-Bohm effect in photon-phonon interactions. <i>Nature Communications</i> , 2014 , 5, 3225	17.4	96
203	Comment on "Nonreciprocal light propagation in a silicon photonic circuit". <i>Science</i> , 2012 , 335, 38; author reply 38	33.3	93
202	Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell equations solvers. <i>Journal of Computational Physics</i> , 2012 , 231, 3406-3431	4.1	92
201	Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles. <i>Joule</i> , 2019 , 3, 1478-14	1 86 7.8	91
200	Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. <i>Physical Review B</i> , 2015 , 91,	3.3	91
199	Omnidirectional resonance in a metaldielectrichetal geometry. Applied Physics Letters, 2004, 84, 4421-	4 <u>4</u> 243	91
198	Thermal Photonics and Energy Applications. <i>Joule</i> , 2017 , 1, 264-273	27.8	90

197	Wave physics as an analog recurrent neural network. Science Advances, 2019, 5, eaay6946	14.3	89
196	Time reversal of light with linear optics and modulators. <i>Physical Review Letters</i> , 2004 , 93, 173903	7.4	88
195	A single photonic cavity with two independent physical synthetic dimensions. <i>Science</i> , 2020 , 367, 59-64	33.3	87
194	Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices. ACS Photonics, 2018, 5, 4781-4	17837	85
193	Near-complete violation of detailed balance in thermal radiation. <i>Physical Review B</i> , 2014 , 90,	3.3	82
192	Method for sensitivity analysis of photonic crystal devices. <i>Optics Letters</i> , 2004 , 29, 2288-90	3	82
191	Photonic thermal management of coloured objects. <i>Nature Communications</i> , 2018 , 9, 4240	17.4	80
190	High-performance near-field thermophotovoltaics for waste heat recovery. <i>Nano Energy</i> , 2017 , 41, 344-	31501	79
189	Electronically programmable photonic molecule. <i>Nature Photonics</i> , 2019 , 13, 36-40	33.9	77
188	Persistent Directional Current at Equilibrium in Nonreciprocal Many-Body Near Field Electromagnetic Heat Transfer. <i>Physical Review Letters</i> , 2016 , 117, 134303	7.4	76
187	Generating Light from Darkness. <i>Joule</i> , 2019 , 3, 2679-2686	27.8	73
186	Inverse-designed non-reciprocal pulse router for chip-based LiDAR. <i>Nature Photonics</i> , 2020 , 14, 369-374	33.9	73
185	Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces. <i>Physical Review Letters</i> , 2017 , 118, 203901	7.4	73
184	Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space. <i>Joule</i> , 2019 , 3, 101-17	1 0 7.8	71
183	Angle-selective perfect absorption with two-dimensional materials. <i>Light: Science and Applications</i> , 2016 , 5, e16052	16.7	70
182	Optimization of Multilayer Optical Films with a Memetic Algorithm and Mixed Integer Programming. <i>ACS Photonics</i> , 2018 , 5, 684-691	6.3	70
181	Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. <i>Advanced Materials</i> , 2020 , 32, e1906751	24	68
180	Transforming heat transfer with thermal metamaterials and devices. <i>Nature Reviews Materials</i> , 2021 , 6, 488-507	73.3	68

(2018-2013)

179	Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. <i>Physical Review Letters</i> , 2013 , 111, 203901	7.4	66
178	Enhancing Mo:BiVO4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer. <i>Advanced Energy Materials</i> , 2018 , 8, 1701765	21.8	60
177	Wireless energy transfer with the presence of metallic planes. <i>Applied Physics Letters</i> , 2011 , 99, 214102	3.4	60
176	Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2020 , 26, 1-12	3.8	60
175	Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2014 , 132, 3-11	2.1	59
174	Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. <i>Optica</i> , 2016 , 3, 1014	8.6	57
173	Temporal coupled-mode theory for resonant apertures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 1947	1.7	56
172	Thermodynamic upper bound on broadband light coupling with photonic structures. <i>Physical Review Letters</i> , 2012 , 109, 173901	7.4	55
171	Zero-Index Bound States in the Continuum. <i>Physical Review Letters</i> , 2018 , 121, 263901	7.4	55
170	Fundamental bounds on decay rates in asymmetric single-mode optical resonators. <i>Optics Letters</i> , 2013 , 38, 100-2	3	54
169	Planar metallic nanoscale slit lenses for angle compensation. <i>Applied Physics Letters</i> , 2009 , 95, 071112	3.4	54
168	Optical Circulation and Isolation Based on Indirect Photonic Transitions of Guided Resonance Modes. <i>ACS Photonics</i> , 2017 , 4, 1639-1645	6.3	53
167	Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions. <i>Applied Physics Letters</i> , 2009 , 94, 171116	3.4	52
166	Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals. <i>Nano Letters</i> , 2020 , 20, 1923	-1927	51
165	Topologically Protected Complete Polarization Conversion. <i>Physical Review Letters</i> , 2017 , 119, 167401	7.4	50
164	Thermal-to-electrical energy conversion by diodes under negative illumination. <i>Physical Review B</i> , 2016 , 93,	3.3	49
163	Universal modal radiation laws for all thermal emitters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4336-4341	11.5	47
162	Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling. <i>Physical Review Letters</i> , 2018 , 120, 063901	7.4	47

161	Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms. <i>Applied Physics Letters</i> , 2016 , 108, 021110	3.4	47
160	Thermodynamic limits of energy harvesting from outgoing thermal radiation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3609-E3615	11.5	46
159	Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer. <i>ACS Photonics</i> , 2016 , 3, 571-577	6.3	46
158	Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion. <i>ACS Nano</i> , 2017 , 11, 3001-3009	16.7	45
157	Experimental band structure spectroscopy along a synthetic dimension. <i>Nature Communications</i> , 2019 , 10, 3122	17.4	45
156	Doubly resonant (P) nonlinear photonic crystal cavity based on a bound state in the continuum. <i>Optica</i> , 2019 , 6, 1039	8.6	44
155	High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. <i>Journal of Applied Physics</i> , 2017 , 122, 143104	2.5	43
154	Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance. <i>Physical Review A</i> , 2012 , 85,	2.6	43
153	Integrated near-field thermo-photovoltaics for heat recycling. <i>Nature Communications</i> , 2020 , 11, 2545	17.4	42
152	A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. <i>Science Advances</i> , 2018 , 4, eaat2774	14.3	41
151	Near-Field Enhanced Negative Luminescent Refrigeration. <i>Physical Review Applied</i> , 2016 , 6,	4.3	40
150	Near-complete violation of Kirchhoff's law of thermal radiation with a 0.3 T magnetic field. <i>Optics Letters</i> , 2019 , 44, 4203-4206	3	40
149	Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme. <i>ACS Photonics</i> , 2016 , 3, 2420-2426	6.3	40
148	Theory of many-body radiative heat transfer without the constraint of reciprocity. <i>Physical Review B</i> , 2018 , 97,	3.3	38
147	Inverse Design of Photonic Crystals through Automatic Differentiation. ACS Photonics, 2020, 7, 1729-17	74 613	36
146	Topological optical differentiator. <i>Nature Communications</i> , 2021 , 12, 680	17.4	36
145	Tutorial on Electromagnetic Nonreciprocity and its Origins. <i>Proceedings of the IEEE</i> , 2020 , 108, 1684-17	274.3	35
144	Generating arbitrary topological windings of a non-Hermitian band. <i>Science</i> , 2021 , 371, 1240-1245	33.3	35

(2020-2018)

143	Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. <i>Physical Review B</i> , 2018 , 97,	3.3	34	
142	Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling. <i>Nano Letters</i> , 2021 , 21, 1493-1499	11.5	34	
141	Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. <i>Light: Science and Applications</i> , 2020 , 9, 68	16.7	33	
140	Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes. <i>Applied Physics Letters</i> , 2013 , 102, 103104	3.4	33	
139	Design methodology for compact photonic-crystal-based wavelength division multiplexers. <i>Optics Letters</i> , 2011 , 36, 591-3	3	33	
138	Nighttime radiative cooling in hot and humid climates. <i>Optics Express</i> , 2019 , 27, 31587-31598	3.3	33	
137	Exact solution to the steady-state dynamics of a periodically modulated resonator. <i>APL Photonics</i> , 2017 , 2, 076101	5.2	31	
136	Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery. <i>Nano Letters</i> , 2018 , 18, 5224	-5230	31	
135	Upper bound on the modal material loss rate in plasmonic and metamaterial systems. <i>Physical Review Letters</i> , 2013 , 110, 183901	7.4	31	
134	Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces. <i>Nature Communications</i> , 2020 , 11, 674	17.4	29	
133	Subambient daytime radiative cooling textile based on nanoprocessed silk. <i>Nature Nanotechnology</i> , 2021 ,	28.7	28	
132	Photonic Gauge Potential in One Cavity with Synthetic Frequency and Orbital Angular Momentum Dimensions. <i>Physical Review Letters</i> , 2019 , 122, 083903	7.4	27	
131	Integrated Nonmagnetic Optical Isolators Based on Photonic Transitions \$^{ast}\$. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 459-466	3.8	27	
130	Higher-order topological insulators in synthetic dimensions. <i>Light: Science and Applications</i> , 2020 , 9, 131	16.7	27	
129	Multi-frequency finite-difference frequency-domain algorithm for active nanophotonic device simulations. <i>Optica</i> , 2016 , 3, 1256	8.6	27	
128	Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parityEime symmetric circuit. <i>Nature Electronics</i> , 2020 , 3, 273-279	28.4	27	
127	Three-Dimensional Dynamic Localization of Light from a Time-Dependent Effective Gauge Field for Photons. <i>Physical Review Letters</i> , 2015 , 114, 243901	7.4	26	
126	Homotopy characterization of non-Hermitian Hamiltonians. <i>Physical Review B</i> , 2020 , 101,	3.3	26	

125	Sub-Wavelength Passive Optical Isolators Using Photonic Structures Based on Weyl Semimetals. <i>Advanced Optical Materials</i> , 2020 , 8, 2000100	8.1	26
124	Wireless power transfer in the presence of metallic plates: Experimental results. <i>AIP Advances</i> , 2013 , 3, 062102	1.5	25
123	Experimental demonstration of acoustic semimetal with topologically charged nodal surface. <i>Science Advances</i> , 2020 , 6, eaav2360	14.3	24
122	Optical pulling force and conveyor belt effect in resonator-waveguide system. <i>Optics Letters</i> , 2013 , 38, 3264-7	3	24
121	On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators. <i>Physical Review Applied</i> , 2018 , 9,	4.3	24
120	Experimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiode. <i>Applied Physics Letters</i> , 2019 , 114, 161102	3.4	23
119	Method for computationally efficient design of dielectric laser accelerator structures. <i>Optics Express</i> , 2017 , 25, 15414-15427	3.3	23
118	Few-Photon Single-Atom Cavity QED With Input-Output Formalism in Fock Space. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 1754-1762	3.8	23
117	Meron Spin Textures in Momentum Space. <i>Physical Review Letters</i> , 2020 , 124, 106103	7.4	22
116	Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. <i>Physical Review A</i> , 2018 , 97,	2.6	22
115	Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation. <i>Physical Review A</i> , 2019 , 99,	2.6	22
114	Connection of temporal coupled-mode-theory formalisms for a resonant optical system and its time-reversal conjugate. <i>Physical Review A</i> , 2019 , 99,	2.6	21
113	Compact Incoherent Image Differentiation with Nanophotonic Structures. ACS Photonics, 2020, 7, 338-3	34 33₃	21
112	Forward-Mode Differentiation of Maxwell Equations. ACS Photonics, 2019, 6, 3010-3016	6.3	20
111	Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime. <i>Physical Review A</i> , 2015 , 92,	2.6	20
110	Analog of superradiant emission in thermal emitters. <i>Physical Review B</i> , 2015 , 92,	3.3	20
109	Maximal nighttime electrical power generation via optimal radiative cooling. <i>Optics Express</i> , 2020 , 28, 25460-25470	3.3	20
108	Radiative Cooling: Harvesting the Coldness of the Universe. <i>Optics and Photonics News</i> , 2019 , 30, 32	1.9	20

(2018-2018)

107	Isotropic wavevector domain image filters by a photonic crystal slab device. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 1685-1691	1.8	20	
106	MESH: A free electromagnetic solver for far-field and near-field radiative heat transfer for layered periodic structures. <i>Computer Physics Communications</i> , 2018 , 231, 163-172	4.2	19	
105	Photonics and thermodynamics concepts in radiative cooling. <i>Nature Photonics</i> ,	33.9	19	
104	Inverse Design of Lightweight Broadband Reflector for Relativistic Lightsail Propulsion. <i>ACS Photonics</i> , 2020 , 7, 2350-2355	6.3	19	
103	Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance. <i>Optics Express</i> , 2016 , 24, 29896-29907	3.3	19	
102	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. <i>Nature Communications</i> , 2021 , 12, 6122	17.4	17	
101	Theory for Twisted Bilayer Photonic Crystal Slabs. <i>Physical Review Letters</i> , 2021 , 126, 136101	7.4	17	
100	Quantum Entanglement and Modulation Enhancement of Free-Electron-Bound-Electron Interaction. <i>Physical Review Letters</i> , 2021 , 126, 233402	7.4	17	
99	Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency. <i>Physical Review A</i> , 2012 , 86,	2.6	16	
98	Nonreciprocity in Bianisotropic Systems with Uniform Time Modulation. <i>Physical Review Letters</i> , 2020 , 125, 266102	7.4	16	
97	Radiative Thermal Router Based on Tunable Magnetic Weyl Semimetals. ACS Photonics, 2020, 7, 3257-3	32 6.3	15	
96	Arbitrary Polarization Conversion with a Photonic Crystal Slab. Advanced Optical Materials, 2019 , 7, 180)1 <u>8.5</u> 3	15	
95	First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis. <i>Applied Physics Letters</i> , 2018 , 113, 041106	3.4	14	
94	Squeeze free space with nonlocal flat optics. <i>Optica</i> , 2020 , 7, 1133	8.6	14	
93	Nighttime Radiative Cooling for Water Harvesting from Solar Panels. ACS Photonics, 2021, 8, 269-275	6.3	14	
92	Time reversal of a wave packet with temporal modulation of gauge potential. <i>Physical Review B</i> , 2016 , 94,	3.3	13	
91	Integrated Nonreciprocal Photonic Devices With Dynamic Modulation. <i>Proceedings of the IEEE</i> , 2020 , 108, 1759-1784	14.3	13	
90	Pulse shortening in an actively mode-locked laser with parity-time symmetry. <i>APL Photonics</i> , 2018 , 3, 086103	5.2	13	

89	Fundamental Limits of the Dew-Harvesting Technology. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2020 , 24, 43-52	3.7	12
88	Compact dynamic optical isolator based on tandem phase modulators. <i>Optics Letters</i> , 2019 , 44, 2240-22	243	12
87	Inverse Design of Metasurfaces Based on Coupled-Mode Theory and Adjoint Optimization. <i>ACS Photonics</i> , 2021 , 8, 2265-2273	6.3	12
86	Topological complex-energy braiding of non-Hermitian bands. <i>Nature</i> , 2021 , 598, 59-64	50.4	11
85	Nonreciprocal Optical Dissipation Based on Direction-Dependent Rabi Splitting. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-7	3.8	10
84	Theory of solar cell light trapping through a nonequilibrium Green's function formulation of Maxwell's equations. <i>Physical Review B</i> , 2017 , 96,	3.3	10
83	Experimental Demonstration of Dynamical Input Isolation in Nonadiabatically Modulated Photonic Cavities. <i>ACS Photonics</i> , 2019 , 6, 162-169	6.3	10
82	Planar, Ultrathin, Subwavelength Spectral Light Separator for Efficient, Wide-Angle Spectral Imaging. <i>ACS Photonics</i> , 2017 , 4, 525-535	6.3	9
81	Photonic Refrigeration from Time-Modulated Thermal Emission. <i>Physical Review Letters</i> , 2020 , 124, 077	74,02	9
80	Nonreciprocal radiative heat transfer between two planar bodies. <i>Physical Review B</i> , 2020 , 101,	3.3	9
79	Protecting ice from melting under sunlight via radiative cooling Science Advances, 2022, 8, eabj9756	14.3	9
78	Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons. <i>Photonics Research</i> , 2020 , 8, B8	6	9
77	Generation of tilted spatiotemporal optical vortices using transmission nodal line. Optica,	8.6	9
76	Nonequilibrium Casimir Force with a Nonzero Chemical Potential for Photons. <i>Physical Review Letters</i> , 2016 , 117, 267401	7.4	9
75	Dynamic band structure measurement in the synthetic space. Science Advances, 2021, 7,	14.3	9
74	Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs <i>Science Advances</i> , 2022 , 8, eabm4308	14.3	9
73	Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson equation in a Green function formalism: Part I Implementation with the method of discrete dipole approximation. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2378	1.7	8
72	Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson® equation in a Green® function formalism: Part II Implementation using standard electromagnetic solvers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2387	1.7	8

(2021-2019)

71	Relation between photon thermal Hall effect and persistent heat current in nonreciprocal radiative heat transfer. <i>Physical Review B</i> , 2019 , 100,	3.3	8
70	Violating Kirchhoff Law of Thermal Radiation in Semitransparent Structures. <i>ACS Photonics</i> , 2021 , 8, 2417-2424	6.3	8
69	Reaching the Ultimate Efficiency of Solar Energy Harvesting with a Nonreciprocal Multijunction Solar Cell <i>Nano Letters</i> , 2021 ,	11.5	8
68	Arbitrary linear transformations for photons in the frequency synthetic dimension. <i>Nature Communications</i> , 2021 , 12, 2401	17.4	7
67	Isotropic topological second-order spatial differentiator operating in transmission mode. <i>Optics Letters</i> , 2021 , 46, 3247-3250	3	7
66	Configurable Phase Transitions in a Topological Thermal Material. <i>Physical Review Letters</i> , 2021 , 127, 105901	7.4	7
65	Synthetic gauge potential and effective magnetic field in a Raman medium undergoing molecular modulation. <i>Physical Review A</i> , 2017 , 95,	2.6	6
64	High Reflection from a One-Dimensional Array of Graphene Nanoribbons. ACS Photonics, 2019, 6, 339-3	3 46 13	6
63	Universal programmable photonic architecture for quantum information processing. <i>Physical Review A</i> , 2020 , 101,	2.6	6
62	Silicon nitride waveguide as a power delivery component for on-chip dielectric laser accelerators. <i>Optics Letters</i> , 2019 , 44, 335-338	3	6
61	CHEMICAL POTENTIAL OF PHOTONS AND ITS IMPLICATIONS FOR CONTROLLING RADIATIVE HEAT TRANSFER. <i>Annual Review of Heat Transfer</i> , 2020 , 23, 397-431	2.7	6
60	Prospects and applications of photonic neural networks. Advances in Physics: X, 2022, 7,	5.1	6
59	Beating absorption in solid-state high harmonics. Communications Physics, 2020, 3,	5.4	6
58	Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators. <i>Optica</i> , 2021 , 8, 415	8.6	6
57	Deep-Subwavelength Thermal Switch via Resonant Coupling in Monolayer Hexagonal Boron Nitride. <i>Physical Review Applied</i> , 2021 , 15,	4.3	6
56	Self-Focused Thermal Emission and Holography Realized by Mesoscopic Thermal Emitters. <i>ACS Photonics</i> , 2021 , 8, 497-504	6.3	6
55	Unidirectional light transport in dynamically modulated waveguides. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
54	Structured 3D linear space-time light bullets by nonlocal nanophotonics. <i>Light: Science and Applications</i> , 2021 , 10, 160	16.7	6

53	SpaceTime Metasurfaces for Power Combining of Waves. ACS Photonics,	6.3	6
52	Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. <i>Physical Review Applied</i> , 2019 , 11,	4.3	5
51	Design of a multichannel photonic crystal dielectric laser accelerator. <i>Photonics Research</i> , 2020 , 8, 1586	6	5
50	Theoretical constraints on reciprocal and non-reciprocal many-body radiative heat transfer. <i>Physical Review B</i> , 2020 , 102,	3.3	5
49	Wide wavelength-tunable narrow-band thermal radiation from moir[patterns. <i>Applied Physics Letters</i> , 2021 , 118, 131111	3.4	5
48	Perfect RGB-IR Color Routers for Sub-Wavelength Size CMOS Image Sensor Pixels. <i>Advanced Photonics Research</i> , 2021 , 2, 2000048	1.9	5
47	Synthetic frequency dimensions in dynamically modulated ring resonators. APL Photonics, 2021, 6, 0711	0522	5
46	Self-sustaining thermophotonic circuits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11596-11601	11.5	4
45	Nonreciprocal Metamaterial Obeying Time-Reversal Symmetry. <i>Physical Review Letters</i> , 2020 , 124, 2574	1 9 734	4
44	Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition. <i>Optics Express</i> , 2019 , 27, 20711-20719	3.3	4
43	Controllable finite ultra-narrow quality-factor peak in a perturbed Dirac-cone band structure of a photonic-crystal slab. <i>Applied Physics Letters</i> , 2021 , 119, 031105	3.4	4
42	Atomic-Scale Control of Coherent Thermal Radiation. <i>ACS Photonics</i> , 2021 , 8, 872-878	6.3	4
41	Design of a tapered slot waveguide dielectric laser accelerator for sub-relativistic electrons. <i>Optics Express</i> , 2018 , 26, 22801-22815	3.3	4
40	Inverse Design of Plasma Metamaterial Devices for Optical Computing. <i>Physical Review Applied</i> , 2021 , 16,	4.3	4
39	Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. <i>Physical Review B</i> , 2021 , 104,	3.3	4
38	Topological dissipation in a time-multiplexed photonic resonator network. Nature Physics,	16.2	4
37	Photonic crystal theory 2008 , 431-454		3
36	Deterministic photonic quantum computation in a synthetic time dimension. <i>Optica</i> ,	8.6	3

(2020-2021)

35	A perspective on the pathway toward full wave simulation of large area metalenses. <i>Applied Physics Letters</i> , 2021 , 119, 150502	3.4	3
34	Photonic Modal Circulator Using Temporal Refractive-Index Modulation with Spatial Inversion Symmetry. <i>Physical Review Letters</i> , 2021 , 126, 193901	7.4	3
33	Tunable Frequency Filter Based on Twisted Bilayer Photonic Crystal Slabs. ACS Photonics, 2022, 9, 800-	80 53	3
32	Thermodynamics of Light Management in Near-Field Thermophotovoltaics. <i>Physical Review Applied</i> , 2021 , 16,	4.3	3
31	Penetration Depth Reduction with Plasmonic Metafilms. ACS Photonics, 2019, 6, 2049-2055	6.3	2
30	Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann-Schwinger formalism. <i>Optics Letters</i> , 2020 , 45, 595-598	3	2
29	Experimental demonstration of silicon photonic devices optimized by a flexible and deterministic pixel-by-pixel technique. <i>Applied Physics Letters</i> , 2020 , 117, 071104	3.4	2
28	Effect of Coulomb interaction on the transient optical response of electrons in field-coupled quantum dots. <i>Physical Review A</i> , 2021 , 103,	2.6	2
27	Shockley-Queisser analysis of the temperature-efficiency correlation of solar cells in the presence of non-radiative heat transfer. <i>Optics Express</i> , 2021 , 29, 27554-27561	3.3	2
26	Generation of guided space-time wave packets using multilevel indirect photonic transitions in integrated photonics. <i>Physical Review Research</i> , 2021 , 3,	3.9	2
25	Efficient and robust wireless power transfer based on parity-time symmetry 2020,		1
24	Casimir force between two plasmonic metallic plates from a real frequency perspective. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2981	1.7	1
23	Exterior tuning and switching of non-equilibrium Casimir force. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2021 , 38, 151	1.7	1
22	Nonreciprocal Devices in Silicon Photonics. <i>Optics and Photonics News</i> , 2020 , 31, 38	1.9	1
21	Electron Pulse Compression with Optical Beat Note. <i>Physical Review Letters</i> , 2021 , 127, 164802	7.4	1
20	Practical efficiency limits of electroluminescent cooling 2019,		1
19	Controlling the dopant profile for SRH suppression at low current densities in 1 330 nm GaInAsP light-emitting diodes. <i>Applied Physics Letters</i> , 2020 , 116, 203503	3.4	1
18	Single-Photon Transport in a Topological Waveguide from a Dynamically Modulated Photonic System. <i>Physical Review Applied</i> , 2020 , 14,	4.3	1

17	Correction to Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices ACS <i>Photonics</i> , 2021 , 8, 1505-1505	6.3	1
16	Single Gyrotropic Particle as a Heat Engine. <i>ACS Photonics</i> , 2021 , 8, 1623-1629	6.3	1
15	Photonic arbitrary linear transformations in the frequency synthetic dimension 2021 ,		1
14	High-performance photonic transformers for DC voltage conversion. <i>Nature Communications</i> , 2021 , 12, 4684	17.4	1
13	Observation of Weyl exceptional rings in thermal diffusion <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2110018119	11.5	1
12	Nighttime electric power generation at a density of 50 mW/m2 via radiative cooling of a photovoltaic cell. <i>Applied Physics Letters</i> , 2022 , 120, 143901	3.4	1
11	Concentrated radiative cooling and its constraint from reciprocity Optics Express, 2022, 30, 275-285	3.3	1
10	Temporal modulation brings metamaterials into new era. <i>Light: Science and Applications</i> , 2022 , 11,	16.7	1
9	Efficient method for accelerating line searches in adjoint optimization of photonic devices by combining Schur complement domain decomposition and Born series expansions <i>Optics Express</i> , 2022 , 30, 6413-6424	3.3	O
8	Scattering of a single plasmon polariton by multiple atoms for in-plane control of light. <i>Nanophotonics</i> , 2020 , 10, 579-587	6.3	O
7	Adaptive four-level modeling of laser cooling of solids. <i>Applied Physics Letters</i> , 2021 , 119, 181107	3.4	O
6	Control of non-equilibrium Casimir force. <i>Applied Physics Letters</i> , 2021 , 118, 144001	3.4	О
5	Topological Materials for Functional Optoelectronic Devices. Advanced Functional Materials, 2110655	15.6	О
4	Spectral emissivity modeling in multi-resonant systems using coupled-mode theory <i>Optics Express</i> , 2022 , 30, 9463-9472	3.3	0
3	Lineshape study of optical force spectra on resonant structures <i>Optics Express</i> , 2022 , 30, 6142-6160	3.3	
2	Shockley-Queisser analysis of the temperature-efficiency correlation of solar cells in the presence of non-radiative heat transfer: erratum. <i>Optics Express</i> , 2021 , 29, 39173	3.3	
1	Universal Behavior of the Scattering Matrix Near Thresholds in Photonics <i>Physical Review Letters</i> , 2021 , 127, 277401	7.4	