## Elaine E Irvine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243299/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spontaneous Cholemia in C57BL/6 Mice Predisposes to Liver Cancer in NASH. Cellular and Molecular<br>Gastroenterology and Hepatology, 2022, 13, 875-878.                                                                                                   | 4.5  | 5         |
| 2  | Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Molecular Psychiatry, 2021, 26, 2562-2576.                                                                        | 7.9  | 60        |
| 3  | Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5<br>disorder. Brain, 2020, 143, 811-832.                                                                                                                 | 7.6  | 34        |
| 4  | Genetic deletion of S6k1 does not rescue the phenotypic deficits observed in the R6/2 mouse model of<br>Huntington's disease. Scientific Reports, 2019, 9, 16133.                                                                                         | 3.3  | 2         |
| 5  | Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088.                                                                                                                                                                  | 11.9 | 207       |
| 6  | Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity.<br>Molecular Metabolism, 2019, 20, 38-50.                                                                                                                 | 6.5  | 18        |
| 7  | Extrahypothalamic GABAergic nociceptin–expressing neurons regulate AgRP neuron activity to control feeding behavior. Journal of Clinical Investigation, 2019, 130, 126-142.                                                                               | 8.2  | 20        |
| 8  | Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice.<br>Molecular Metabolism, 2018, 18, 97-106.                                                                                                                    | 6.5  | 22        |
| 9  | Neuronatin regulates pancreatic Î <sup>2</sup> cell insulin content and secretion. Journal of Clinical Investigation, 2018, 128, 3369-3381.                                                                                                               | 8.2  | 47        |
| 10 | Phasic Stimulation of Midbrain Dopamine Neuron Activity Reduces Salt Consumption. ENeuro, 2018, 5, ENEURO.0064-18.2018.                                                                                                                                   | 1.9  | 29        |
| 11 | nNOS-Expressing Neurons in the Ventral Tegmental Area and Substantia Nigra Pars Compacta. ENeuro, 2018, 5, ENEURO.0381-18.2018.                                                                                                                           | 1.9  | 14        |
| 12 | Modulation of SF1 Neuron Activity Coordinately Regulates Both Feeding Behavior and Associated Emotional States. Cell Reports, 2017, 21, 3559-3572.                                                                                                        | 6.4  | 73        |
| 13 | PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing<br>β-secretase in an Alzheimer's disease model. Proceedings of the National Academy of Sciences of the<br>United States of America, 2016, 113, 12292-12297. | 7.1  | 106       |
| 14 | <i>α</i> <scp>CAR IGF</scp> â€1 vector targeting of motor neurons ameliorates disease progression in <scp>ALS</scp> mice. Annals of Clinical and Translational Neurology, 2016, 3, 752-768.                                                               | 3.7  | 8         |
| 15 | Phosphorylation of K <sup>+</sup> channels at single residues regulates memory formation. Learning and Memory, 2016, 23, 174-181.                                                                                                                         | 1.3  | 4         |
| 16 | Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice. Oncotarget, 2016, 7, 29937-29943.                                                                                                                | 1.8  | 14        |
| 17 | Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Reports, 2015, 11, 335-343.                                                                                                                  | 6.4  | 59        |
| 18 | Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal<br>CA3 A1 synapses. Hippocampus, 2014, 24, 1413-1416.                                                                                                  | 1.9  | 36        |

Elaine E Irvine

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Peripheral activation of the Y2-receptor promotes secretion of GLP-1 and improves glucose tolerance.<br>Molecular Metabolism, 2013, 2, 142-152.                                                                   | 6.5  | 54        |
| 20 | Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and<br>Metaplasticity. PLoS ONE, 2012, 7, e31124.                                                                         | 2.5  | 60        |
| 21 | Properties of Contextual Memory Formed in the Absence of αCaMKII Autophosphorylation. Molecular<br>Brain, 2011, 4, 8.                                                                                             | 2.6  | 29        |
| 22 | Insulin receptor substrate 2 is a negative regulator of memory formation. Learning and Memory, 2011, 18, 375-383.                                                                                                 | 1.3  | 50        |
| 23 | Mechanism for long-term memory formation when synaptic strengthening is impaired. Proceedings of the United States of America, 2011, 108, 18471-18475.                                                            | 7.1  | 86        |
| 24 | The ATM Cofactor ATMIN Protects against Oxidative Stress and Accumulation of DNA Damage in the Aging Brain. Journal of Biological Chemistry, 2010, 285, 38534-38542.                                              | 3.4  | 50        |
| 25 | Dominant Role of the p110β Isoform of PI3K over p110α in Energy Homeostasis Regulation by POMC and AgRP Neurons. Cell Metabolism, 2009, 10, 343-354.                                                              | 16.2 | 149       |
| 26 | Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice.<br>Biochemical and Biophysical Research Communications, 2009, 386, 257-262.                                  | 2.1  | 121       |
| 27 | Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span. Science, 2009, 326, 140-144.                                                                                                               | 12.6 | 1,009     |
| 28 | Sex-dependent up-regulation of two splicing factors, Psf and Srp20, during hippocampal memory formation. Learning and Memory, 2007, 14, 693-702.                                                                  | 1.3  | 33        |
| 29 | NMDA receptorâ€dependent longâ€term potentiation in mouse hippocampal interneurons shows a unique<br>dependence on Ca <sup>2+</sup> /calmodulinâ€dependent kinases. Journal of Physiology, 2007, 584,<br>885-894. | 2.9  | 56        |
| 30 | αCaMKII autophosphorylation: a fast track to memory. Trends in Neurosciences, 2006, 29, 459-465.                                                                                                                  | 8.6  | 89        |
| 31 | αCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nature<br>Neuroscience, 2005, 8, 411-412.                                                                              | 14.8 | 114       |
| 32 | Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. European Journal of Neuroscience, 2003, 18, 423-431.                                       | 2.6  | 83        |
| 33 | Learning and memory impairments in Kvbeta1.1-null mutants are rescued by environmental enrichment or ageing. European Journal of Neuroscience, 2003, 18, 1640-1644.                                               | 2.6  | 29        |
| 34 | Mood differences between male and female light smokers and nonsmokers. Pharmacology<br>Biochemistry and Behavior, 2002, 72, 681-689.                                                                              | 2.9  | 25        |
| 35 | Conditioned anxiety to nicotine. Psychopharmacology, 2002, 164, 309-317.                                                                                                                                          | 3.1  | 22        |
| 36 | Tolerance to midazolam's anxiolytic effects after short-term nicotine treatment.<br>Neuropharmacology, 2001, 40, 710-716.                                                                                         | 4.1  | 17        |

Elaine E Irvine

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The dorsal raphé nucleus is a crucial structure mediating nicotine's anxiolytic effects and the development of tolerance and withdrawal responses. Psychopharmacology, 2001, 155, 78-85. | 3.1 | 106       |
| 38 | Social isolation modifies nicotine's effects in animal tests of anxiety. British Journal of Pharmacology, 2001, 132, 1389-1395.                                                          | 5.4 | 68        |
| 39 | Tolerance to nicotine's effects in the elevated plus-maze and increased anxiety during withdrawal.<br>Pharmacology Biochemistry and Behavior, 2001, 68, 319-325.                         | 2.9 | 86        |
| 40 | Different treatment regimens and the development of tolerance to nicotine's anxiogenic effects.<br>Pharmacology Biochemistry and Behavior, 2001, 68, 769-776.                            | 2.9 | 29        |
| 41 | Development of tolerance to nicotine's anxiogenic effect in the social interaction test. Brain<br>Research, 2001, 894, 95-100.                                                           | 2.2 | 20        |
| 42 | In Adolescence, Female Rats Are More Sensitive to the Anxiolytic Effect of Nicotine Than Are Male Rats.<br>Neuropsychopharmacology, 2001, 25, 601-607.                                   | 5.4 | 77        |
| 43 | The effect of treatment regimen on the development of tolerance to the sedative and anxiolytic effects of diazepam. Psychopharmacology, 1999, 145, 251-259.                              | 3.1 | 54        |