Valentina M Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432940/publications.pdf

Version: 2024-02-01

		147566	143772
57	4,251 citations	31	57
papers	citations	h-index	g-index
59	59	59	7095
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Palmitic and Stearic Acids Inhibit Chaperone-Mediated Autophagy (CMA) in POMC-like Neurons In Vitro. Cells, 2022, 11, 920.	1.8	2
2	Neuronal Rubicon Represses Extracellular APP/Amyloid β Deposition in Alzheimer's Disease. Cells, 2022, 11, 1860.	1.8	2
3	Mitochondrial <scp>E3</scp> ubiquitin ligase 1 (<scp>MUL1</scp>) as a novel therapeutic target for diseases associated with mitochondrial dysfunction. IUBMB Life, 2022, 74, 850-865.	1.5	9
4	Editorial: Mitochondrial Remodeling and Dynamic Inter-Organellar Contacts in Cardiovascular Physiopathology. Frontiers in Cell and Developmental Biology, 2021, 9, 679725.	1.8	6
5	Polycystinâ€1 regulates cardiomyocyte mitophagy. FASEB Journal, 2021, 35, e21796.	0.2	6
6	Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166208.	1.8	17
7	Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Frontiers in Nutrition, 2021, 8, 775382.	1.6	31
8	New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Frontiers in Genetics, 2021, 12, 792231.	1.1	6
9	Emerging role of mitophagy in cardiovascular physiology and pathology. Molecular Aspects of Medicine, 2020, 71, 100822.	2.7	114
10	Angiotensin- $(1\hat{a}\in "9)$ prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death and Differentiation, 2020, 27, 2586-2604.	5.0	29
11	Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology, 2020, 350, 197-264.	1.6	28
12	Miro1 as a novel regulator of hypertrophy in neonatal rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 141, 65-69.	0.9	5
13	Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging, 2020, 12, 1011-1033.	1.4	48
14	Polycystin-2 Is Required for Starvation- and Rapamycin-Induced Atrophy in Myotubes. Frontiers in Endocrinology, 2019, 10, 280.	1.5	4
15	Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 2019, 26, 1195-1212.	5.0	46
16	Polycystin-2-dependent control of cardiomyocyte autophagy. Journal of Molecular and Cellular Cardiology, 2018, 118, 110-121.	0.9	32
17	The STIM1 inhibitor ML9 disrupts basal autophagy in cardiomyocytes by decreasing lysosome content. Toxicology in Vitro, 2018, 48, 121-127.	1.1	7
18	Down Syndrome Critical Region 1 Gene, <i>Rcan1</i> , Helps Maintain a More Fused Mitochondrial Network. Circulation Research, 2018, 122, e20-e33.	2.0	47

#	Article	IF	CITATIONS
19	Regulator of Calcineurin 1 helps coordinate wholeâ€body metabolism and thermogenesis. EMBO Reports, 2018, 19, .	2.0	30
20	Abstract 281: The Calcineurin/Rcan1 Axis Influences Mitochondrial Dynamics, Metabolism, and Biogenesis. Circulation Research, 2018, 123, .	2.0	0
21	Calcium Transport and Signaling in Mitochondria. , 2017, 7, 623-634.		168
22	Calcineurin signaling in the heart: The importance of time and place. Journal of Molecular and Cellular Cardiology, 2017, 103, 121-136.	0.9	81
23	Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2891-2903.	1.8	48
24	Mitochondrial dynamics, mitophagy and cardiovascular disease. Journal of Physiology, 2016, 594, 509-525.	1.3	441
25	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	1.3	70
26	mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling. Scientific Reports, 2016, 6, 36394.	1.6	32
27	BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism. Autophagy, 2016, 12, 287-296.	4.3	31
28	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	1.3	31
29	Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1113-1118.	1.9	50
30	FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes. Biochemical Pharmacology, 2015, 98, 92-101.	2.0	17
31	Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	2.7	37
32	Drp1 Loss-of-function Reduces Cardiomyocyte Oxygen Dependence Protecting the Heart From Ischemia-reperfusion Injury. Journal of Cardiovascular Pharmacology, 2014, 63, 477-487.	0.8	88
33	Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 2014, 74, 103-111.	0.9	37
34	Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway. Diabetes, 2014, 63, 75-88.	0.3	195
35	Mitochondrial fission is required for cardiomyocyte hypertrophy via a Ca2+-calcineurin signalling pathway. Journal of Cell Science, 2014, 127, 2659-71.	1.2	140
36	Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle, 2014, 13, 2281-2295.	1.3	89

3

#	Article	IF	CITATIONS
37	Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochemical Pharmacology, 2014, 91, 323-336.	2.0	47
38	Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca ²⁺ uptake. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1-E13.	1.8	49
39	Alteration in mitochondrial Ca 2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	2.7	15
40	Endoplasmic Reticulum and the Unfolded Protein Response. International Review of Cell and Molecular Biology, 2013, 301, 215-290.	1.6	440
41	Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1334-1344.	1.8	37
42	Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovascular Research, 2012, 93, 320-329.	1.8	124
43	Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. International Journal of Biochemistry and Cell Biology, 2012, 44, 16-20.	1.2	162
44	A BAX/BAK and Cyclophilin D-Independent Intrinsic Apoptosis Pathway. PLoS ONE, 2012, 7, e37782.	1.1	33
45	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2143-2152.	1.2	483
46	Mitochondrial Dynamics: a Potential New Therapeutic Target for Heart Failure. Revista Espanola De Cardiologia (English Ed), 2011, 64, 916-923.	0.4	51
47	The complex interplay between mitochondrial dynamics and cardiac metabolism. Journal of Bioenergetics and Biomembranes, 2011, 43, 47-51.	1.0	59
48	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2511-2511.	1.2	30
49	Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 887-903.	2.2	27
50	Mitochondria fine-tune the slow Ca2+ transients induced by electrical stimulation of skeletal myotubes. Cell Calcium, 2010, 48, 358-370.	1.1	42
51	Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free Radical Biology and Medicine, 2010, 48, 526-534.	1.3	39
52	Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 509-518.	1.8	102
53	An Inositol 1,4,5-Triphosphate (IP3)-IP3 Receptor Pathway Is Required for Insulin-Stimulated Glucose Transporter 4 Translocation and Glucose Uptake in Cardiomyocytes. Endocrinology, 2010, 151, 4665-4677.	1.4	47
54	Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species. FEBS Letters, 2009, 583, 3485-3492.	1.3	9

#	Article	IF	CITATIONS
55	Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 2008, 77, 387-397.	1.8	212
56	Testosterone Induces an Intracellular Calcium Increase by a Nongenomic Mechanism in Cultured Rat Cardiac Myocytes. Endocrinology, 2006, 147, 1386-1395.	1.4	130
57	Hyperosmotic stress activates p65/RelB NFκB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. FEBS Letters, 2006, 580, 3469-3476.	1.3	15