Johann E Gudjonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432692/publications.pdf

Version: 2024-02-01

203 papers

15,460 citations

25034 57 h-index 21540 114 g-index

227 all docs

227 docs citations

times ranked

227

17029 citing authors

#	Article	IF	CITATIONS
1	Genome-wide scan reveals association of psoriasis with IL-23 and NF-ήB pathways. Nature Genetics, 2009, 41, 199-204.	21.4	1,229
2	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	21,4	848
3	Psoriasis. Lancet, The, 2021, 397, 1301-1315.	13.7	792
4	Induction of IL-17+ T Cell Trafficking and Development by IFN- \hat{I}^3 : Mechanism and Pathological Relevance in Psoriasis. Journal of Immunology, 2008, 181, 4733-4741.	0.8	433
5	The Emerging Role of IL-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. Journal of Investigative Dermatology, 2013, 133, 17-26.	0.7	369
6	Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nature Genetics, 2010, 42, 991-995.	21.4	331
7	Transcriptome Analysis of Psoriasis in a Large Case–Control Sample: RNA-Seq Provides Insights into Disease Mechanisms. Journal of Investigative Dermatology, 2014, 134, 1828-1838.	0.7	318
8	Genome-wide association analysis identifies three psoriasis susceptibility loci. Nature Genetics, 2010, 42, 1000-1004.	21.4	313
9	Psoriasis: epidemiology. Clinics in Dermatology, 2007, 25, 535-546.	1.6	285
10	Atopic Dermatitis Is an IL-13–Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. Journal of Investigative Dermatology, 2019, 139, 1480-1489.	0.7	283
11	IL-1F5, -F6, -F8, and -F9: A Novel IL-1 Family Signaling System That Is Active in Psoriasis and Promotes Keratinocyte Antimicrobial Peptide Expression. Journal of Immunology, 2011, 186, 2613-2622.	0.8	282
12	Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation. Journal of Immunology, 2013, 190, 2252-2262.	0.8	260
13	IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. Journal of Allergy and Clinical Immunology, 2017, 140, 109-120.	2.9	259
14	Molecular Dissection of Psoriasis: Integrating Genetics and Biology. Journal of Investigative Dermatology, 2010, 130, 1213-1226.	0.7	253
15	Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nature Communications, 2017, 8, 15382.	12.8	251
16	IL-36 Promotes Myeloid Cell Infiltration, Activation, and Inflammatory Activity in Skin. Journal of Immunology, 2014, 192, 6053-6061.	0.8	245
17	Genome-wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. American Journal of Human Genetics, 2015, 97, 816-836.	6.2	245
18	Mouse Models of Psoriasis. Journal of Investigative Dermatology, 2007, 127, 1292-1308.	0.7	225

#	Article	IF	CITATIONS
19	Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biology, 2015, 16, 24.	8.8	204
20	Distinct Clinical Differences Between HLA-Cw*0602 Positive and Negative Psoriasis Patients – An Analysis of 1019 HLA-C- and HLA-B-Typed Patients. Journal of Investigative Dermatology, 2006, 126, 740-745.	0.7	201
21	HLA-Cw6-Positive and HLA-Cw6-Negative Patients with Psoriasis Vulgaris have Distinct Clinical Features. Journal of Investigative Dermatology, 2002, 118, 362-365.	0.7	192
22	Assessment of the Psoriatic Transcriptome in a Large Sample: Additional Regulated Genes and Comparisons with In Vitro Models. Journal of Investigative Dermatology, 2010, 130, 1829-1840.	0.7	192
23	Psoriasis – as an autoimmune disease caused by molecular mimicry. Trends in Immunology, 2009, 30, 494-501.	6.8	179
24	Gene Expression in Skin and Lymphoblastoid Cells: Refined Statistical Method Reveals Extensive Overlap in cis-eQTL Signals. American Journal of Human Genetics, 2010, 87, 779-789.	6.2	169
25	Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. Immunity, 2020, 53, 878-894.e7.	14.3	169
26	Psoriasis: a mixed autoimmune and autoinflammatory disease. Current Opinion in Immunology, 2017, 49, 1-8.	5.5	166
27	A Susceptibility Gene for Psoriatic Arthritis Maps to Chromosome 16q: Evidence for Imprinting. American Journal of Human Genetics, 2003, 72, 125-131.	6.2	165
28	Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Annals of the Rheumatic Diseases, 2018, 77, 1653-1664.	0.9	162
29	Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis. PLoS ONE, 2011 , 6, $e18266$.	2.5	160
30	Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nature Communications, 2015, 6, 7001.	12.8	156
31	Global Gene Expression Analysis Reveals Evidence for Decreased Lipid Biosynthesis and Increased Innate Immunity in Uninvolved Psoriatic Skin. Journal of Investigative Dermatology, 2009, 129, 2795-2804.	0.7	153
32	Dissecting the Heterogeneity of Skin Gene Expression Patterns in Systemic Sclerosis. Arthritis and Rheumatology, 2015, 67, 3016-3026.	5.6	123
33	Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Medicine, 2017, 9, 24.	8.2	118
34	Evidence for Altered Wnt Signaling in Psoriatic Skin. Journal of Investigative Dermatology, 2010, 130, 1849-1859.	0.7	116
35	Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight, 2020, 5, .	5.0	115
36	Dietary Recommendations for Adults With Psoriasis or Psoriatic Arthritis From the Medical Board of the National Psoriasis Foundation. JAMA Dermatology, 2018, 154, 934.	4.1	112

#	Article	IF	Citations
37	Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk. Frontiers in Immunology, 2019, 10, 746.	4.8	110
38	Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics, 2013, 14, 527.	2.8	108
39	Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis. JCI Insight, 2020, 5, .	5.0	105
40	Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1406-1415.	2.9	103
41	Distinct Gene Expression Profiles of Viral- and Nonviral-Associated Merkel Cell Carcinoma Revealed by Transcriptome Analysis. Journal of Investigative Dermatology, 2013, 133, 936-945.	0.7	98
42	A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nature Immunology, 2017, 18, 152-160.	14.5	98
43	Robust shifts in S100a9 expression with aging: A novel mechanism for chronic inflammation. Scientific Reports, 2013, 3, 1215.	3.3	96
44	Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nature Communications, 2018, 9, 4178.	12.8	95
45	The Histone Methyltransferase Setdb2 Modulates Macrophage Phenotype and Uric Acid Production in Diabetic Wound Repair. Immunity, 2019, 51, 258-271.e5.	14.3	85
46	IFN- \hat{l}^3 enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Science Translational Medicine, 2019, 11, .	12.4	85
47	Sex bias in autoimmunity. Current Opinion in Rheumatology, 2019, 31, 53-61.	4.3	82
48	EGFR and IL-1 Signaling Synergistically Promote Keratinocyte Antimicrobial Defenses in a Differentiation-Dependent Manner. Journal of Investigative Dermatology, 2011, 131, 329-337.	0.7	81
49	Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Medicine, 2015, 7, 86.	8.2	80
50	RNA-Seq Analysis of IL-1B and IL-36 Responses in Epidermal Keratinocytes Identifies a Shared MyD88-Dependent Gene Signature. Frontiers in Immunology, 2018, 9, 80.	4.8	79
51	IFN-γ and TNF-α synergism may provide a link between psoriasis and inflammatory atherogenesis. Scientific Reports, 2017, 7, 13831.	3.3	78
52	Lupus Skin Is Primed for IL-6 Inflammatory Responses through a Keratinocyte-Mediated Autocrine TypeÂlÂInterferon Loop. Journal of Investigative Dermatology, 2017, 137, 115-122.	0.7	77
53	Immunopathogenesis of hidradenitis suppurativa and response to anti–TNF-α therapy. JCI Insight, 2020, 5,	5.0	7 5
54	The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. Journal of Investigative Dermatology, 2017, 137, 546-549.	0.7	74

#	Article	IF	CITATIONS
55	Heterogeneity of Inflammatory and Cytokine Networks in Chronic Plaque Psoriasis. PLoS ONE, 2012, 7, e34594.	2.5	72
56	MCPIP1/Regnase-1 Restricts IL-17A– and IL-17C–Dependent Skin Inflammation. Journal of Immunology, 2017, 198, 767-775.	0.8	65
57	Clinical Goals and Barriers to Effective Psoriasis Care. Dermatology and Therapy, 2019, 9, 5-18.	3.0	63
58	"Autoinflammatory psoriasisâ€â€"genetics and biology of pustular psoriasis. Cellular and Molecular Immunology, 2021, 18, 307-317.	10.5	63
59	Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. Journal of Experimental Medicine, 2021, 218, .	8.5	63
60	Differential ErbB1 Signaling in Squamous Cell versus Basal Cell Carcinoma of the Skin. American Journal of Pathology, 2007, 170, 2089-2099.	3.8	61
61	The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nature Immunology, 2021, 22, 839-850.	14.5	60
62	Accumulating Evidence for the Association and Shared Pathogenic Mechanisms Between Psoriasis and Cardiovascular-related Comorbidities. American Journal of Medicine, 2014, 127, 1148-1153.	1.5	59
63	CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. Journal of Clinical Investigation, 2017, 127, 2339-2352.	8.2	59
64	Neutrophil Subsets, Platelets, andÂVascular Disease in Psoriasis. JACC Basic To Translational Science, 2019, 4, 1-14.	4.1	56
65	Anti–Neutrophil Extracellular Trap Antibodies and Impaired Neutrophil Extracellular Trap Degradation in Antiphospholipid Syndrome. Arthritis and Rheumatology, 2020, 72, 2130-2135.	5 . 6	56
66	Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genomics, 2012, 13, 472.	2.8	55
67	Cross-Disease Transcriptomics: Unique IL-17A Signaling in Psoriasis Lesions and an Autoimmune PBMC Signature. Journal of Investigative Dermatology, 2016, 136, 1820-1830.	0.7	54
68	Research Techniques Made Simple: Murine Models of Human Psoriasis. Journal of Investigative Dermatology, 2018, 138, e1-e8.	0.7	52
69	IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Science Signaling, 2018, 11 , .	3 . 6	52
70	Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Science Translational Medicine, 2022, 14, eabn2263.	12.4	52
71	Age-Associated Increase in Skin Fibroblast–Derived Prostaglandin E 2 Contributes to Reduced Collagen Levels in Elderly Human Skin. Journal of Investigative Dermatology, 2015, 135, 2181-2188.	0.7	51
72	A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. Journal of Clinical Investigation, 2014, 124, 5205-5218.	8.2	50

#	Article	IF	CITATIONS
73	Modulation of Epidermal Transcription Circuits in Psoriasis: New Links between Inflammation and Hyperproliferation. PLoS ONE, 2013, 8, e79253.	2.5	49
74	GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genetics, 2017, 13, e1006745.	3.5	49
75	Drug Repurposing Prediction for Immune-Mediated Cutaneous Diseases using a Word-Embedding–Based Machine Learning Approach. Journal of Investigative Dermatology, 2019, 139, 683-691.	0.7	48
76	SIRT3 Regulates Macrophage-Mediated Inflammation in Diabetic Wound Repair. Journal of Investigative Dermatology, 2019, 139, 2528-2537.e2.	0.7	46
77	The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight, 2019, 4, .	5.0	46
78	Persistent pruritic papules and plaques: a characteristic histopathologic presentation seen in a subset of patients with adultâ€onset and juvenile Still's disease. Journal of Cutaneous Pathology, 2010, 37, 932-937.	1.3	45
79	Novel systemic drugs under investigation for the treatment of psoriasis. Journal of the American Academy of Dermatology, 2012, 67, 139-147.	1.2	45
80	Molecular Profiling of Cutaneous Lupus Lesions Identifies Subgroups Distinct from Clinical Phenotypes. Journal of Clinical Medicine, 2019, 8, 1244.	2.4	45
81	Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. Journal of Allergy and Clinical Immunology, 2021, 147, 857-869.e7.	2.9	45
82	Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus. Journal of Immunology, 2019, 202, 2121-2130.	0.8	44
83	Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. Journal of Allergy and Clinical Immunology, 2020, 146, 8-16.	2.9	44
84	Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Medical Genomics, 2014, 7, 27.	1.5	43
85	Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta. Rheumatology, 2017, 56, 1970-1981.	1.9	43
86	Sebaceous Gland Atrophy in Psoriasis: AnÂExplanation for Psoriatic Alopecia?. Journal of Investigative Dermatology, 2016, 136, 1792-1800.	0.7	42
87	Exome-wide association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare protective alleles in genes contributing to type I IFN signalling. Human Molecular Genetics, 2017, 26, 4301-4313.	2.9	41
88	Psoriasis drug development and GWAS interpretation through <i>in silico</i> analysis of transcription factor binding sites. Clinical and Translational Medicine, 2015, 4, 13.	4.0	40
89	NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Reports, 2021, 34, 108689.	6.4	40
90	Transcriptomic characterization of prurigo nodularis and the therapeutic response to nemolizumab. Journal of Allergy and Clinical Immunology, 2022, 149, 1329-1339.	2.9	40

#	Article	IF	Citations
91	Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiological Genomics, 2014, 46, 533-546.	2.3	38
92	Proteomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans. Molecular and Cellular Proteomics, 2015, 14, 109-119.	3.8	38
93	Endogenous Glucocorticoid Deficiency in Psoriasis Promotes Inflammation and Abnormal Differentiation. Journal of Investigative Dermatology, 2017, 137, 1474-1483.	0.7	38
94	Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice. Journal of Investigative Dermatology, 2017, 137, 696-705.	0.7	38
95	Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. Journal of Allergy and Clinical Immunology, 2017, 139, 1217-1227.	2.9	38
96	Ultraviolet light induces increased T cell activation in lupus-prone mice via type I IFN-dependent inhibition of T regulatory cells. Journal of Autoimmunity, 2019, 103, 102291.	6.5	38
97	Circadian control of interferon-sensitive gene expression in murine skin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5761-5771.	7.1	38
98	Genetics of Psoriasis in Iceland: Evidence for Linkage of Subphenotypes to Distinct Loci. Journal of Investigative Dermatology, 2005, 124, 1177-1185.	0.7	37
99	A Role for Epigenetics in Psoriasis: Methylated Cytosine–Guanine Sites Differentiate Lesional from Nonlesional Skin and from Normal Skin. Journal of Investigative Dermatology, 2012, 132, 506-508.	0.7	37
100	RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Scientific Reports, 2017, 7, 18045.	3.3	37
101	Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight, 2020, 5, .	5.0	37
102	Metalloproteinase-Mediated, Context-Dependent Function of Amphiregulin and HB-EGF in Human Keratinocytes and Skin. Journal of Investigative Dermatology, 2010, 130, 295-304.	0.7	36
103	Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. IScience, 2021, 24, 101902.	4.1	36
104	Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Human Molecular Genetics, 2013, 22, 1807-1815.	2.9	35
105	Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight, 2021, 6, .	5.0	35
106	Staphylococcus aureus Colonization Is Increased on Lupus Skin Lesions and Is Promoted by IFN-Mediated Barrier Disruption. Journal of Investigative Dermatology, 2020, 140, 1066-1074.e4.	0.7	34
107	KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. Journal of Clinical Investigation, 2020, 130, 3151-3157.	8.2	34
108	Alteration of the EphA2/Ephrin-A Signaling Axis in Psoriatic Epidermis. Journal of Investigative Dermatology, 2013, 133, 712-722.	0.7	33

#	Article	IF	CITATIONS
109	Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals diseaseâ€specific expression profiles. Experimental Dermatology, 2021, 30, 1187-1196.	2.9	33
110	Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature. PLoS ONE, 2012, 7, e33204.	2.5	33
111	Mouse Models of Psoriasis: A Comprehensive Review. Journal of Investigative Dermatology, 2022, 142, 884-897.	0.7	33
112	IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis. Journal of Investigative Dermatology, 2016, 136, 2498-2501.	0.7	31
113	Endoplasmic reticulum stress sensor IRE1 \hat{l}_{\pm} propels neutrophil hyperactivity in lupus. Journal of Clinical Investigation, 2021, 131, .	8.2	30
114	The influence of interferon on healthy and diseased skin. Cytokine, 2020, 132, 154605.	3.2	29
115	IL-27 signaling activates skin cells to induce innate antiviral proteins and protects against Zika virus infection. Science Advances, 2020, 6, eaay3245.	10.3	29
116	Causal Relationship and Shared Genetic Loci between Psoriasis and Type 2 Diabetes through Trans-Disease Meta-Analysis. Journal of Investigative Dermatology, 2021, 141, 1493-1502.	0.7	29
117	Meta-analysis of RNA sequencing datasets reveals an association between TRAJ23, psoriasis, and IL-17A. JCI Insight, 2018, 3, .	5.0	29
118	Insights into hidradenitis suppurativa. Journal of Allergy and Clinical Immunology, 2022, 149, 1150-1161.	2.9	28
119	HLA-Cw6 homozygosity in plaque psoriasis is associated with streptococcal throat infections and pronounced improvement after tonsillectomy: A prospective case series. Journal of the American Academy of Dermatology, 2016, 75, 889-896.	1.2	27
120	Dysregulated epigenetic modifications in psoriasis. Experimental Dermatology, 2021, 30, 1156-1166.	2.9	27
121	IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions. JCI Insight, 2020, 5, .	5.0	27
122	Two cases of syringotropic cutaneous T-cell lymphoma and review of the literature. Journal of the American Academy of Dermatology, 2009, 61, 133-138.	1.2	26
123	Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN- $\hat{l}\pm$ and allergic responses. Journal of Allergy and Clinical Immunology, 2022, 149, 1358-1372.	2.9	26
124	TNF- $\hat{l}\pm$ regulates diabetic macrophage function through the histone acetyltransferase MOF. JCI Insight, 2020, 5, .	5.0	25
125	Human and Murine Evidence for Mechanisms Driving Autoimmune Photosensitivity. Frontiers in Immunology, 2018, 9, 2430.	4.8	24
126	B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Frontiers in Immunology, 2021, 12, 775353.	4.8	24

#	Article	IF	CITATIONS
127	Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. Journal of Clinical Investigation, 2022, 132, .	8.2	24
128	Psoriasis: Past, Present, and Future. Journal of Investigative Dermatology, 2019, 139, e133-e142.	0.7	23
129	Novel cytokine and chemokine markers of hidradenitis suppurativa reflect chronic inflammation and itch. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 74, 631-634.	5 . 7	22
130	Treatment of cutaneous lupus erythematosus: current approaches and future strategies. Current Opinion in Rheumatology, 2020, 32, 208-214.	4.3	22
131	Interleukin 6 regulates psoriasiform inflammation–associated thrombosis. JCI Insight, 2016, 1, e89384.	5.0	22
132	Open-Label Trial of MABp1, a True Human Monoclonal Antibody Targeting Interleukin $1\hat{l}_{\pm}$, for the Treatment of Psoriasis. JAMA Dermatology, 2015, 151, 555.	4.1	21
133	Application of machine learning to determine top predictors of noncalcified coronary burden in psoriasis: An observational cohort study. Journal of the American Academy of Dermatology, 2020, 83, 1647-1653.	1.2	20
134	Targeted Treatment for Erythrodermic Psoriasis: Rationale and Recent Advances. Drugs, 2020, 80, 525-534.	10.9	20
135	Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight, 2022, 7, .	5.0	20
136	Epigenetic Regulation of TLR4 in Diabetic Macrophages Modulates Immunometabolism and Wound Repair. Journal of Immunology, 2020, 204, 2503-2513.	0.8	19
137	New Frontiers in Psoriatic Disease Research, Part I: Genetics, Environmental Triggers, Immunology, Pathophysiology, and Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 2112-2122.e3.	0.7	19
138	Histologic progression of acne inversa/hidradenitis suppurativa: Implications for future investigations and therapeutic intervention. Experimental Dermatology, 2021, 30, 820-830.	2.9	19
139	Epigenetics of Psoriasis. Advances in Experimental Medicine and Biology, 2020, 1253, 209-221.	1.6	19
140	Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Science Translational Medicine, 2022, 14, eabh1478.	12.4	19
141	Advances in Cutaneous Lupus Erythematosus and Dermatomyositis: A Report from the 4th International Conference on Cutaneous Lupus Erythematosus—An Ongoing Need for International Consensus and Collaborations. Journal of Investigative Dermatology, 2019, 139, 270-276.	0.7	18
142	Lack of Evidence for Activation of the Hedgehog Pathway in Psoriasis. Journal of Investigative Dermatology, 2009, 129, 635-640.	0.7	17
143	22 Again: IL-22 as a Risk Gene and Important Mediator in Psoriasis. Journal of Investigative Dermatology, 2014, 134, 1501-1503.	0.7	17
144	Evaluation of a Case Series of Patients With Generalized Pustular Psoriasis in the United States. JAMA Dermatology, 2022, 158, 73.	4.1	17

#	Article	IF	CITATIONS
145	Erlotinib-Induced Skin Inflammation Is IL-1 Mediated in KC-Tie2 Mice and Human Skin Organ Culture. Journal of Investigative Dermatology, 2015, 135, 910-913.	0.7	16
146	<i>DDX58</i> (RIG-I)-related disease is associated with tissue-specific interferon pathway activation. Journal of Medical Genetics, 2022, 59, 294-304.	3.2	16
147	Transcriptional Profiles of Leukocyte Populations Provide a Tool for Interpreting Gene Expression Patterns Associated with High Fat Diet in Mice. PLoS ONE, 2010, 5, e11861.	2.5	16
148	Subcutaneous Panniculitis-Like T-Cell Lymphoma With Bone Marrow Involvement. American Journal of Clinical Pathology, 2015, 143, 265-273.	0.7	14
149	Hyperlipidaemia and IFNgamma/TNFalpha Synergism are associated with cholesterol crystal formation in Endothelial cells partly through modulation of Lysosomal pH and Cholesterol homeostasis. EBioMedicine, 2020, 59, 102876.	6.1	14
150	Sex Bias and Autoimmune Diseases. Journal of Investigative Dermatology, 2022, 142, 857-866.	0.7	14
151	Analysis of global gene expression and genetic variation in psoriasis. Journal of the American Academy of Dermatology, 2007, 57, 365.	1.2	13
152	Recent genetic advances in innate immunity of psoriatic arthritis. Clinical Immunology, 2020, 214, 108405.	3.2	13
153	Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis and Rheumatology, 2021, 73, 1062-1072.	5.6	13
154	Noninvasive Tape-Stripping with High-Resolution RNA Profiling Effectively Captures a Preinflammatory State in Nonlesional Psoriatic Skin. Journal of Investigative Dermatology, 2022, 142, 1587-1596.e2.	0.7	13
155	Mouse models: Psoriasis: an epidermal disease after all?. European Journal of Human Genetics, 2006, 14, 2-4.	2.8	12
156	Acute treatment of generalized pustular psoriasis of von Zumbusch with single-dose infliximab. Journal of the American Academy of Dermatology, 2013, 68, e187-e189.	1.2	12
157	2D Visualization of the Psoriasis Transcriptome Fails to Support the Existence of Dual-Secreting IL-17A/IL-22 Th17 T Cells. Frontiers in Immunology, 2019, 10, 589.	4.8	12
158	IFN- \hat{l}° Is a Rheostat for Development of Psoriasiform Inflammation. Journal of Investigative Dermatology, 2022, 142, 155-165.e3.	0.7	12
159	Direct cellular reprogramming enables development of viral T antigen–driven Merkel cell carcinoma in mice. Journal of Clinical Investigation, 2022, 132, .	8.2	12
160	Current understanding of the genetic basis of psoriasis. Expert Review of Clinical Immunology, 2009, 5, 433-443.	3.0	11
161	Cytokine responses in nonlesional psoriatic skin as clinical predictor to anti-TNF agents. Journal of Allergy and Clinical Immunology, 2022, 149, 640-649.e5.	2.9	11
162	IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. Journal of Investigative Dermatology, 2021, 141, 2436-2448.	0.7	11

#	Article	IF	Citations
163	Epicardial adipose tissue volume is greater in men with severe psoriasis, implying an increased cardiovascular disease risk: A cross-sectional study. Journal of the American Academy of Dermatology, 2022, 86, 535-543.	1.2	11
164	Evaluation of a Case Series of Patients With Palmoplantar Pustulosis in the United States. JAMA Dermatology, 2022, 158, 68.	4.1	11
165	Transgenic expression of S100A2 in hairless mouse skin enhances Cxcl13 mRNA in response to solar-simulated radiation. Archives of Dermatological Research, 2009, 301, 205-217.	1.9	10
166	Skin-Expressing IncRNAs in Inflammatory Responses. Frontiers in Genetics, 2022, 13, 835740.	2.3	10
167	Psoriasis: A complex clinical and genetic disorder. Current Rheumatology Reports, 2004, 6, 314-316.	4.7	8
168	Psoriasis and the MAITing Game: A Role for IL-17A+ Invariant TCR CD8+ T Cells in Psoriasis?. Journal of Investigative Dermatology, 2014, 134, 2864-2866.	0.7	8
169	Symmetric drugâ€related intertriginous and flexural exanthema: Clinicopathologic study of 19 cases and review of literature. Journal of Cutaneous Pathology, 2021, 48, 1471-1479.	1.3	8
170	Psoriasiform pemphigus foliaceus: a report of two cases. Journal of Cutaneous Pathology, 2012, 39, 549-553.	1.3	7
171	Biologics in the treatment of skin and rheumatologic diseases. Journal of Allergy and Clinical Immunology, 2020, 145, 1138-1141.	2.9	7
172	Pemphigus herpetiformis: Report of a rare case. Journal of the American Academy of Dermatology, 2012, 67, e231-e233.	1.2	6
173	The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis. Journal of Investigative Dermatology, 2017, 137, e87-e91.	0.7	6
174	A vestigial pathway for sex differences in immune regulation. Cellular and Molecular Immunology, 2017, 14, 578-580.	10.5	6
175	Integrative Approach to Reveal Cell Type Specificity and Gene Candidates for Psoriatic Arthritis Outside the MHC. Frontiers in Genetics, 2019, 10, 304.	2.3	6
176	Adalimumab in Psoriasis: How Much Is Enough?. Journal of Investigative Dermatology, 2019, 139, 19-22.	0.7	6
177	Thymoma-associated multiorgan autoimmunity initially manifested by graft-versus-host disease–like erythroderma: Case report and possible therapeutic role of antimalarial drugs. JAAD Case Reports, 2020, 6, 719-721.	0.8	6
178	CYR61/CCN1: A Novel Mediator of Epidermal Hyperplasia and Inflammation in Psoriasis?. Journal of Investigative Dermatology, 2015, 135, 2562-2564.	0.7	5
179	Ongoing Pleuritic Chest Pain and a Guinea Pig: Missed Pulmonary Embolism and Majocchi's Granuloma. American Journal of Medicine, 2016, 129, e165-e167.	1.5	5
180	IFN- \hat{l}^{ϱ} is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight, 2022, 7, .	5.0	5

#	Article	IF	Citations
181	Transcriptional determinants of individualized inflammatory responses at anatomically separate sites. Journal of Allergy and Clinical Immunology, 2018, 141, 805-808.	2.9	4
182	Cutaneous Adverse Events in Newly Approved FDA Non-cancer Drugs: A Systematic Review. Drugs in R and D, 2020, 20, 171-187.	2.2	4
183	Inflammatory Bowel Disease Risk Variants Are Associated with an Increased Risk of Skin Cancer. Inflammatory Bowel Diseases, 2022, 28, 1667-1676.	1.9	4
184	Roles Played by Stress-Induced Pathways in Driving Ethnic Heterogeneity for Inflammatory Skin Diseases. Frontiers in Immunology, 2022, 13, 845655.	4.8	4
185	Overriding the Immune System's Sweet Tooth: Fatty Acids Rile Up Innate Immunity. Cell, 2019, 177, 1088-1090.	28.9	3
186	WASP, Tregs, and food allergies â€" rare disease provides insight into a common problem. Journal of Clinical Investigation, 2016, 126, 3728-3730.	8.2	3
187	The problem with upward mobility. Nature Medicine, 2007, 13, 786-787.	30.7	2
188	IL-17A Softens the Skin: Antifibrotic Properties of IL-17A in Systemic Sclerosis. Journal of Investigative Dermatology, 2020, 140, 13-14.	0.7	2
189	Multiple myeloma presenting as cryoglobulinemic vasculitis. JAAD Case Reports, 2021, 11, 81-83.	0.8	2
190	Deficiency of myeloid-related proteins 8 and 14 (Mrp8/Mrp14) does not block inflammaging but prevents steatosis. Oncotarget, 2016, 7, 35535-35551.	1.8	2
191	Dynamic Manifestation of Autoimmune Diseases in Skin – Cytokine Hubs and Paradoxical Reactions. Journal of Allergy and Clinical Immunology, 2021, , .	2.9	2
192	Interleukin-17 receptor D: An orphan receptor finds a home in the skin. Science Immunology, 2019, 4, .	11.9	1
193	17083 Identification of psoriasis-protective IL-17D variant associated with increased IL-17D and FAM19A5 expression in psoriatic skin. Journal of the American Academy of Dermatology, 2020, 83, AB78.	1.2	1
194	IFN-gamma Signaling in Lichen Planus. Global Clinical and Translational Research, 2021, , .	0.3	1
195	When bugs and drugs conspire: driving acneiform skin toxicity. Journal of Clinical Investigation, 2020, 130, 1090-1092.	8.2	1
196	Unsuspected lymphomatoid granulomatosis in a patient with antisynthetase syndrome. Cutis, 2017, 100, E22-E26.	0.3	1
197	The Role of CD8 T Cells and Their Antigen Receptors in Psoriasis. Psoriasis Forum, 2010, 16a, 39-46.	0.1	0
198	Reporting of MABp1 for the Treatment of Psoriasis—Reply. JAMA Dermatology, 2015, 151, 1144.	4.1	0

#	Article	IF	CITATIONS
199	Dystrophic calcifications point the wayâ€"Unusual and early diagnostic clue of Conradi-HÃ⅓nermann-Happle syndrome. JAAD Case Reports, 2018, 4, 333-336.	0.8	0
200	Making New Connectionsâ€"Chromosome Conformation Capture for Identification of Disease-Associated Target Genes. Journal of Investigative Dermatology, 2019, 139, 514-517.	0.7	0
201	Meeting Report: 68th Montagna Symposium on the Biology of Skin "Decoding Complex Skin Diseases: Integrating Genetics, Genomics, and Disease Biology― Journal of Investigative Dermatology, 2020, 140, 2105-2110.	0.7	0
202	$203\hat{a}\in$ Non-lesional and lesional lupus skin share inflammatory phenotypes that drive activation of CD16+DCs., 2021,,.		0
203	The psoriasis glycome: differential expression of cholesterol particle glycans and IgA glycans linked to disease severity. Journal of Investigative Dermatology, 2022, , .	0.7	0