Stefano Carrazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432498/publications.pdf

Version: 2024-02-01

214721 201575 7,069 50 27 47 h-index citations g-index papers 50 50 50 7415 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Parton distributions with LHC data. Nuclear Physics B, 2013, 867, 244-289.	0.9	1,299
2	Parton distributions for the LHC run II. Journal of High Energy Physics, 2015, 2015, 1.	1.6	1,298
3	Parton distributions from high-precision collider data. European Physical Journal C, 2017, 77, 663.	1.4	897
4	PDF4LHC recommendations for LHC Run II. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 023001.	1.4	875
5	Tuning PYTHIA 8.1: the Monash 2013 tune. European Physical Journal C, 2014, 74, 1.	1.4	574
6	Parton distributions with QED corrections. Nuclear Physics B, 2013, 877, 290-320.	0.9	425
7	APFEL: A PDF evolution library with QED corrections. Computer Physics Communications, 2014, 185, 1647-1668.	3.0	232
8	The path to proton structure at 1% accuracy. European Physical Journal C, 2022, 82, .	1.4	138
9	Illuminating the photon content of the proton within a global PDF analysis. SciPost Physics, 2018, 5, .	1.5	125
10	Parton distribution benchmarking with LHC data. Journal of High Energy Physics, 2013, 2013, 1.	1.6	104
11	An unbiased Hessian representation for Monte Carlo PDFs. European Physical Journal C, 2015, 75, 369.	1.4	98
12	A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties. European Physical Journal C, 2017, 77, 516.	1.4	97
13	Machine Learning in High Energy Physics Community White Paper. Journal of Physics: Conference Series, 2018, 1085, 022008.	0.3	94
14	A determination of the charm content of the proton. European Physical Journal C, 2016, 76, 647.	1.4	75
15	APFEL Web: a web-based application for the graphical visualization of parton distribution functions. Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 057001.	1.4	61
16	A compression algorithm for the combination of PDF sets. European Physical Journal C, 2015, 75, 474.	1.4	60
17	Parton distributions with theory uncertainties: general formalism and first phenomenological studies. European Physical Journal C, 2019, 79, 1.	1.4	51
18	Parton distributions with threshold resummation. Journal of High Energy Physics, 2015, 2015, 1.	1.6	48

#	Article	lF	CITATIONS
19	Qibo: a framework for quantum simulation with hardware acceleration. Quantum Science and Technology, 2022, 7, 015018.	2.6	47
20	Specialized minimal PDFs for optimized LHC calculations. European Physical Journal C, 2016, 76, 205.	1.4	45
21	QCDLoop: A comprehensive framework for one-loop scalar integrals. Computer Physics Communications, 2016, 209, 134-143.	3.0	42
22	Can New Physics Hide inside the Proton?. Physical Review Letters, 2019, 123, 132001.	2.9	40
23	Precision determination of the strong coupling constant within a global PDF analysis. European Physical Journal C, 2018, 78, 408.	1.4	39
24	APFELgrid: A high performance tool for parton density determinations. Computer Physics Communications, 2017, 212, 205-209.	3.0	37
25	Lund jet images from generative and cycle-consistent adversarial networks. European Physical Journal C, 2019, 79, 1.	1.4	36
26	Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II. Journal of High Energy Physics, 2014, 2014, 1.	1.6	30
27	On the impact of lepton PDFs. Journal of High Energy Physics, 2015, 2015, 1.	1.6	30
28	An open-source machine learning framework for global analyses of parton distributions. European Physical Journal C, 2021, 81, 1.	1.4	26
29	Towards a new generation of parton densities with deep learning models. European Physical Journal C, 2019, 79, 1.	1.4	20
30	Determining the proton content with a quantum computer. Physical Review D, 2021, 103, .	1.6	20
31	A first determination of parton distributions with theoretical uncertainties. European Physical Journal C, 2019, 79, 1.	1.4	19
32	Reference results for time-like evolution up to O \hat{l}_{\pm} s 3 \$\$ mathcal{O}left({alpha}_s^3ight) \$\$. Journal of High Energy Physics, 2015, 2015, 1.	1.6	13
33	VegasFlow: Accelerating Monte Carlo simulation across multiple hardware platforms. Computer Physics Communications, 2020, 254, 107376.	3.0	13
34	Research infrastructures in the LHC era: A scientometric approach. Technological Forecasting and Social Change, 2016, 112, 121-133.	6.2	8
35	MINLO t-channel single-top plus jet. Journal of High Energy Physics, 2018, 2018, 1.	1.6	8
36	PDFFlow: Parton distribution functions on GPU. Computer Physics Communications, 2021, 264, 107995.	3.0	7

#	Article	IF	Citations
37	Compressing PDF sets using generative adversarial networks. European Physical Journal C, 2021, 81, 1.	1.4	6
38	Machine learning challenges in theoretical HEP. Journal of Physics: Conference Series, 2018, 1085, 022003.	0.3	4
39	Riemann-Theta Boltzmann machine. Neurocomputing, 2020, 388, 334-345.	3.5	4
40	MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning. Computer Physics Communications, 2021, 263, 107908.	3.0	4
41	MadFlow: automating Monte Carlo simulation on GPU for particle physics processes. European Physical Journal C, 2021, 81, 1.	1.4	4
42	A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients. Physica Medica, 2021, 82, 28-39.	0.4	3
43	The Prime state and its quantum relatives. Quantum - the Open Journal for Quantum Science, 0, 4, 371.	0.0	3
44	Minimisation strategies for the determination of parton density functions. Journal of Physics: Conference Series, 2018, 1085, 052007.	0.3	2
45	MadFlow: towards the automation of Monte Carlo simulation on GPU for particle physics processes. EPJ Web of Conferences, 2021, 251, 03022.	0.1	2
46	Combining NNPDF3.0 and NNPDF2.3QED through the APFEL evolution code., 2016,,.		2
47	A data-based parametrization of parton distribution functions. European Physical Journal C, 2022, 82, 1.	1.4	2
48	Sampling the Riemann-Theta Boltzmann machine. Computer Physics Communications, 2020, 256, 107464.	3.0	1
49	The socio-economic value of scientific publications: The case of Earth Observation satellites. Technological Forecasting and Social Change, 2022, 180, 121730.	6.2	1
50	Towards parton distributions with fitted charm. Nuclear and Particle Physics Proceedings, 2016, 270-272, 23-26.	0.2	0