
Nathalie Castanon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating Human Serum Metabolites Derived from the Intake of a Saffron Extract (Safr'InsideTM) Protect Neurons from Oxidative Stress: Consideration for Depressive Disorders. Nutrients, 2022, 14, 1511.	1.7	12
2	Inflammatory Bases of Neuropsychiatric Symptom Domains: Mechanisms and Specificity. , 2021, , 335-353.		0
3	Saffron Extract-Induced Improvement of Depressive-Like Behavior in Mice Is Associated with Modulation of Monoaminergic Neurotransmission. Nutrients, 2021, 13, 904.	1.7	17
4	Nutrigenomic modification induced by anthocyanin-rich bilberry extract in the hippocampus of ApoE-/- mice. Journal of Functional Foods, 2021, 85, 104609.	1.6	8
5	Prevention of Stress-Induced Depressive-like Behavior by Saffron Extract Is Associated with Modulation of Kynurenine Pathway and Monoamine Neurotransmission. Pharmaceutics, 2021, 13, 2155.	2.0	9
6	A new experimental design to study inflammation-related versus non-inflammation-related depression in mice. Journal of Neuroinflammation, 2021, 18, 290.	3.1	8
7	Rapeseed oil fortified with micronutrients improves cognitive alterations associated with metabolic syndrome. Brain, Behavior, and Immunity, 2020, 84, 23-35.	2.0	7
8	The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology, 2020, 119, 104750.	1.3	37
9	Obesity and Depression: Shared Pathophysiology and Translational Implications. , 2019, , 169-183.		2
10	Brain tumor necrosis factor-α mediates anxiety-like behavior in a mouse model of severe obesity. Brain, Behavior, and Immunity, 2019, 77, 25-36.	2.0	36
11	L'origine inflammatoire de la dépression. Pourlascience Fr, 2019, N° 497 - mars, 34-41.	0.0	0
12	Role of Inflammation in Neuropsychiatric Comorbidity of Obesity: Experimental and Clinical Evidence. , 2018, , 357-375.		3
13	Brain Kynurenine and BH4 Pathways: Relevance to the Pathophysiology and Treatment of Inflammation-Driven Depressive Symptoms. Frontiers in Neuroscience, 2018, 12, 499.	1.4	63
14	Role of Adiposity-Driven Inflammation in Depressive Morbidity. Neuropsychopharmacology, 2017, 42, 115-128.	2.8	124
15	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	2.0	85
16	Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders. Frontiers in Endocrinology, 2016, 7, 160.	1.5	7
17	Switching Adolescent High-Fat Diet to Adult Control Diet Restores Neurocognitive Alterations. Frontiers in Behavioral Neuroscience, 2016, 10, 225.	1.0	56
18	Role of Inflammation in the Development of Neuropsychiatric Symptom Domains: Evidence and Mechanisms, Current Topics in Behavioral Neurosciences, 2016, 31, 31-44.	0.8	48

NATHALIE CASTANON

#	Article	IF	CITATIONS
19	Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Frontiers in Neuroscience, 2015, 9, 229.	1.4	138
20	Perinatal high-fat diet increases hippocampal vulnerability to the adverse effects of subsequent high-fat feeding. Psychoneuroendocrinology, 2015, 53, 82-93.	1.3	54
21	Juvenile Obesity Enhances Emotional Memory and Amygdala Plasticity through Glucocorticoids. Journal of Neuroscience, 2015, 35, 4092-4103.	1.7	80
22	Animal Models to Study the Role of Kynurenine Pathway in Mood, Behavior, and Cognition. , 2015, , 323-337.		1
23	Neuropsychiatric Comorbidity in Obesity: Role of Inflammatory Processes. Frontiers in Endocrinology, 2014, 5, 74.	1.5	124
24	Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation. Brain, Behavior, and Immunity, 2014, 41, 10-21.	2.0	190
25	Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain, Behavior, and Immunity, 2014, 40, 9-17.	2.0	263
26	Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome. Psychoneuroendocrinology, 2014, 40, 48-59.	1.3	71
27	Cognitive and Emotional Alterations Are Related to Hippocampal Inflammation in a Mouse Model of Metabolic Syndrome. PLoS ONE, 2011, 6, e24325.	1.1	206
28	Induction of IDO by Bacille Calmette-GueÌrin Is Responsible for Development of Murine Depressive-Like Behavior. Journal of Immunology, 2009, 182, 3202-3212.	0.4	279
29	Interferon-Î ³ and Tumor Necrosis Factor-α Mediate the Upregulation of Indoleamine 2,3-Dioxygenase and the Induction of Depressive-Like Behavior in Mice in Response to Bacillus Calmette-Guérin. Journal of Neuroscience, 2009, 29, 4200-4209.	1.7	441
30	Cytokines and depression: experimental evidence and intermediate mechanisms. , 2009, , 123-138.		1
31	Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. Journal of Neuroimmunology, 2008, 200, 90-99.	1.1	104
32	Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain, Behavior, and Immunity, 2008, 22, 1087-1095.	2.0	142
33	Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System. Neuropsychopharmacology, 2008, 33, 2341-2351.	2.8	267
34	Cytokines, Sickness Behavior, and Depression. , 2007, , 281-318.		11
35	Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology, 2007, 32, 516-531.	1.3	381
36	Bacille Calmetteâ€Guérin Inoculation Induces Chronic Activation of Peripheral and Brain Indoleamine 2,3â€Dioxygenase in Mice. Journal of Infectious Diseases, 2005, 192, 537-544.	1.9	95

NATHALIE CASTANON

#	Article	IF	CITATIONS
37	Chronic administration of tianeptine balances lipopolysaccharide-induced expression of cytokines in the spleen and hypothalamus of rats. Psychoneuroendocrinology, 2004, 29, 778-790.	1.3	48
38	Conditioned taste aversion with lipopolysaccharide and peptidoglycan does not activate cytokine gene expression in the spleen and hypothalamus of mice. Brain, Behavior, and Immunity, 2004, 18, 186-200.	2.0	32
39	Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation. Psychoneuroendocrinology, 2003, 28, 19-34.	1.3	46
40	Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biological Psychiatry, 2003, 54, 960-971.	0.7	338
41	Conditioned place aversion with interleukin-1β in mice is not associated with activation of the cytokine network. Brain, Behavior, and Immunity, 2003, 17, 110-120.	2.0	14
42	Chronic Mild Stress in Mice Decreases Peripheral Cytokine and Increases Central Cytokine Expression Independently of IL-10 Regulation of the Cytokine Network. NeuroImmunoModulation, 2002, 10, 359-366.	0.9	44
43	Effects of antidepressants on cytokine production and actions. Brain, Behavior, and Immunity, 2002, 16, 569-574.	2.0	130
44	Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-11² in the rat. Psychopharmacology, 2001, 154, 50-60.	1.5	125
45	Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacology Biochemistry and Behavior, 2000, 67, 559-566.	1.3	92
46	Central injection of IL-10 antagonizes the behavioural effects of lipopolysaccharide in rats. Psychoneuroendocrinology, 1999, 24, 301-311.	1.3	162
47	Is There Evidence for an Effect of Antidepressant Drugs on Immune Function?. Advances in Experimental Medicine and Biology, 1999, 461, 267-281.	0.8	16
48	Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature, 1998, 393, 175-178.	13.7	309
49	Genetic analysis of the relationships between behavioral and neuroendocrine traits in roman high and low avoidance rat lines. Behavior Genetics, 1995, 25, 371-384.	1.4	49
50	Male Fischer 344 and Lewis rats display differences in locomotor reactivity, but not in anxiety-related behaviours: relationship with the hippocampal serotonergic system. Brain Research, 1995, 693, 169-178.	1.1	86
51	Paradoxical differences in animal models of anxiety among the Roman rat lines. Neuroscience Letters, 1994, 182, 217-221.	1.0	44
52	Cocaine sensitivity in roman high and low avoidance rats is modulated by sex and gonadal hormone status. Brain Research, 1994, 645, 179-185.	1.1	56
53	Maturation of the behavioral and neuroendocrine differences between the Roman rat lines. Physiology and Behavior, 1994, 55, 775-782.	1.0	42
54	Prolactin as a link between behavioral and immune differences between the Roman rat lines. Physiology and Behavior, 1992, 51, 1235-1241.	1.0	37

#	Article	IF	CITATIONS
55	Different responsiveness of spleen lymphocytes from two lines of psychogenetically selected rats (Roman high and low avoidance). Journal of Neuroimmunology, 1991, 31, 27-33.	1.1	33
56	Multiple neuroendocrine responses to chronic social stress: Interaction between individual characteristics and situational factors. Physiology and Behavior, 1990, 47, 1099-1105.	1.0	83
57	Inflammation, sickness behaviour and depression. , 0, , 265-279.		4