Nenad D Zrnic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432034/publications.pdf

Version: 2024-02-01

623734 677142 43 568 14 22 citations h-index g-index papers 46 46 46 322 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Failure analysis of the end eye connection of the bucket wheel excavator portal tie-rod support. Engineering Failure Analysis, 2009, 16, 740-750.	4.0	53
2	Bucket wheel excavator: Integrity assessment of the bucket wheel boom tie-rod welded joint. Engineering Failure Analysis, 2011, 18, 212-222.	4.0	42
3	Bucket wheel failure caused by residual stresses in welded joints. Engineering Failure Analysis, 2011, 18, 700-712.	4.0	42
4	Cracks, repair and reconstruction of bucket wheel excavator slewing platform. Engineering Failure Analysis, 2009, 16, 1631-1642.	4.0	41
5	Proactive approach to smart maintenance and logistics as a auxiliary and service processes in a company. Journal of Applied Engineering Science, 2016, 14, 433-442.	0.9	36
6	Failure analysis and redesign of the bucket wheel excavator two-wheel bogie. Engineering Failure Analysis, 2010, 17, 473-485.	4.0	31
7	Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator. Archives of Civil and Mechanical Engineering, 2015, 15, 243-250.	3.8	30
8	Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems. Archives of Civil and Mechanical Engineering, 2012, 12, 348-359.	3.8	26
9	Failure analysis and reconstruction design of the slewing platform mantle of the bucket wheel excavator O&K SchRs 630. Engineering Failure Analysis, 2011, 18, 658-669.	4.0	22
10	Failure Analysis of the Tower Crane Counterjib. Procedia Engineering, 2011, 10, 2238-2243.	1.2	20
11	The influence of constructive parameters on response of bucket wheel excavator superstructure in the out-of-resonance region. Archives of Civil and Mechanical Engineering, 2015, 15, 977-985.	3.8	18
12	â€`Designing-in' failures and redesign of bucket wheel excavator undercarriage. Engineering Failure Analysis, 2013, 35, 95-103.	4.0	17
13	Modelling of dynamic interaction between structure and trolley for mega container cranes. Mathematical and Computer Modelling of Dynamical Systems, 2009, 15, 295-311.	2.2	16
14	Concept of intelligent logistic for automotive industry. Journal of Applied Engineering Science, 2016, 14, 233-238.	0.9	15
15	Ports Sustainability: A life cycle assessment of Zero Emission Cargo Handling Equipment. Strojniski Vestnik/Journal of Mechanical Engineering, 2013, 9, 547-555.	1.1	14
16	A survey of literature on shuttle based storage and retrieval systems. FME Transactions, 2018, 46, 400-409.	1.4	14
17	A multi-objective optimization model for minimizing cost, travel time and Co2 emission in an AS/RS. FME Transactions, 2017, 45, 620-629.	1.4	13
18	Parameter sensitivity analysis of non-dimensional models of quayside container cranes. Mathematical and Computer Modelling of Dynamical Systems, 2010, 16, 145-160.	2.2	12

#	Article	IF	Citations
19	Mathematical Models of Multiserver Queuing System for Dynamic Performance Evaluation in Port. Mathematical Problems in Engineering, 2012, 2012, 1-19.	1.1	11
20	Comments on "Modeling of system dynamics of a slewing flexible beam with moving payload pendulumâ€. Mechanics Research Communications, 2008, 35, 622-624.	1.8	10
21	Failure Analysis of the Stacker Crawler Chain Link. Procedia Engineering, 2011, 10, 2244-2249.	1.2	10
22	A review of multi-objective optimization of container flow using sea and land legs together. FME Transactions, 2016, 44, 204-211.	1.4	10
23	Design of a high capacity derrick crane considering the effects induced by load application and release. Journal of Applied Engineering Science, 2017, 15, 15-24.	0.9	9
24	Numerical study of wind actions applied to a low profile container crane. FME Transactions, 2016, 44, 29-35.	1.4	7
25	External Load Variability of Multibucket Machines for Mechanization. Advanced Materials Research, 2011, 422, 678-683.	0.3	6
26	Role of Cargo Weight and Volume: Minimizing Costs and CO2 Emissions in Container Transport. Lecture Notes in Logistics, 2016, , 159-173.	0.8	5
27	A multi-objective optimization model for minimizing investment expenses, cycle times and CO2 footprint of an automated storage and retrieval systems. Transport, 2019, 34, 275-286.	1.2	5
28	A Contribution on the History of Ropeways. History of Mechanism and Machine Science, 2012, , 381-394.	0.2	4
29	Dynamic Responses of Mobile Elevating Work Platform and Mega Container Crane Structures. Advanced Materials Research, 2012, 562-564, 1539-1543.	0.3	3
30	Application of mathematical model for container transport flow of goods: from Far east to Serbia. Tehnicki Vjesnik, 2016, 23, .	0.2	3
31	A study of material flow systems (input/output) in high-bay warehouses. International Journal of Production Research, 1992, 30, 2137-2149.	7.5	2
32	Redesign of the Bucket Wheel Excavators Substructures Based on the Comparative Stress – Strain Analysis. Advanced Materials Research, 2011, 402, 660-665.	0.3	2
33	Energy regeneration in automated high bay warehouse with stacker cranes. Tehnicki Vjesnik, 2017, 24, .	0.2	2
34	Dynamic analyses of gantry crane under several trolley and payload movements. FME Transactions, 2020, 48, 281-286.	1.4	2
35	A relationship between different costs of container yard modelling in port using queuing approach. FME Transactions, 2018, 46, 367-373.	1.4	2
36	History of Belt Conveyors Until the End of the 19th Century. History of Mechanism and Machine Science, 2022, , 210-223.	0.2	2

#	Article	IF	CITATIONS
37	The Costs of Container Transport Flow Between Far East and Serbia Using Different Liner Shipping Services. Logistics & Sustainable Transport, 2015, 6, 34-40.	1.5	1
38	Optimization of container transport routes. Prosperitas, 2020, 7, 31-42.	0.1	1
39	LCA of the manufacturing stage of the laboratory belt conveyor. FME Transactions, 2018, 46, 410-417.	1.4	1
40	Tesla's Research in the Field of Mechanical Engineering Focused on Fountains Design. History of Mechanism and Machine Science, 2012, , 407-420.	0.2	1
41	Specific cost ratio in a port modelling by M/Ek/1 queue. FME Transactions, 2018, 46, 355-359.	1.4	1
42	Spatial Reduced Dynamic Model of a Bucket Wheel Excavator with Two Masts. Lecture Notes in Mechanical Engineering, 2019, , 215-235.	0.4	1
43	A Life-Cycle Approach to Characterizing Environmental Impact of Logistics Equipment in Container Ports: An Example of Yard Trucks. Lecture Notes in Logistics, 2014, , 135-145.	0.8	0