Ana Maria Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L Journal of Functional Foods, 2013, 5, 1732-1740.	3.4	269
2	Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 2010, 120, 247-254.	8.2	236
3	Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and) Tj ETQq1 1	0,784314 2.6	rgBT /Over 216
4	Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology, 2010, 48, 99-106.	3.6	191
5	Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chemistry, 2013, 141, 3721-3730.	8.2	157
6	Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 2010, 48, 1466-1472.	3.6	152
7	Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, 2012, 50, 829-834.	3.6	140
8	Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chemistry, 2011, 127, 1600-1608.	8.2	128
9	Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Analytical Methods, 2013, 6, 1337-1344.	2.6	121
10	Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 2012, 50, 1576-1582.	3.6	118
11	Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chemistry, 2013, 141, 4152-4160.	8.2	118
12	Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 2014, 55, 389-396.	5.2	117
13	Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International, 2011, 44, 2233-2236.	6.2	116
14	Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food and Chemical Toxicology, 2017, 110, 165-188.	3.6	114
15	Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chemistry, 2013, 136, 718-725.	8.2	112
16	Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separation and Purification Technology, 2016, 164, 114-124.	7.9	106
17	Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 2010, 43, 544-550.	5.2	93
18	Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Research International, 2014, 62, 684-693.	6.2	93

#	Article	IF	CITATIONS
	Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
19	Nutrition, 2012, 67, 229-234.	3.2	92
	Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia) Tj ETQq0 0 0 rgBT $_{ m c}$	/Overlock	10 Tf 50 70
20	Food Research International, 2012, 46, 279-285.	6.2	88
21	The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT - Food Science and Technology, 2010, 43, 814-818.	5.2	81
22	Comparing the composition and bioactivity of <i>Crataegus Monogyna</i> flowers and fruits used in folk medicine. Phytochemical Analysis, 2011, 22, 181-188.	2.4	80
23	Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Research International, 2011, 44, 2634-2640.	6.2	79
24	Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chemistry, 2013, 136, 947-954.	8.2	77
25	In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products, 2010, 32, 572-579.	5.2	75
26	Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 2012, 59, 851-863.	1.6	74
27	Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food and Chemical Toxicology, 2009, 47, 2458-2464.	3.6	73
28	Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products, 2013, 44, 104-110.	5.2	72
29	Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chemistry, 2011, 127, 169-173.	8.2	69
30	Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function, 2014, 5, 1091-1100.	4.6	69
31	Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 2012, 135, 1028-1035.	8.2	68
32	Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. European Journal of Lipid Science and Technology, 2013, 115, 176-185.	1.5	68
33	Studies on Chemical Constituents and Bioactivity of <i>Rosa micrantha</i> : An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. Journal of Agricultural and Food Chemistry, 2010, 58, 6277-6284.	5.2	67
34	Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Industrial Crops and Products, 2013, 51, 430-436.	5.2	64
35	Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science and Emerging Technologies, 2017, 41, 160-171.	5.6	62
36	Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC–DAD–ESI/MS. Food Research International, 2012, 49, 516-523.	6.2	60

#	Article	IF	CITATIONS
37	Infusions and Decoctions of Mixed Herbs used in Folk Medicine: Synergism in Antioxidant Potential. Phytotherapy Research, 2011, 25, 1209-1214.	5.8	59
38	Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separation and Purification Technology, 2018, 192, 501-512.	7.9	59
39	Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chemistry, 2011, 125, 488-494.	8.2	58
40	Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food and Chemical Toxicology, 2011, 49, 2983-2989.	3.6	56
41	Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. Industrial Crops and Products, 2016, 88, 8-11.	5.2	56
42	Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Research International, 2014, 62, 272-279.	6.2	53
43	Bioactivity of Different Enriched Phenolic Extracts of Wild Fruits from Northeastern Portugal: A Comparative Study. Plant Foods for Human Nutrition, 2014, 69, 37-42.	3.2	51
44	Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules, 2018, 23, 1037.	3.8	50
45	Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Industrial Crops and Products, 2014, 53, 330-336.	5.2	48
46	Fatty acids profiles of some Spanish wild vegetables. Food Science and Technology International, 2012, 18, 281-290.	2.2	45
47	Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds. BioMed Research International, 2014, 2014, 1-8.	1.9	45
48	Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products, 2015, 66, 62-67.	5.2	44
49	Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products, 2018, 112, 460-466.	5.2	40
50	Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chemistry, 2016, 206, 50-58.	8.2	39
51	Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and "tronchuda― cabbage (Brassica oleraceae L. var. costata) inflorescences. Food and Chemical Toxicology, 2011, 49, 1208-1214.	3.6	35
52	Valorization of traditional foods: nutritional and bioactive properties of <i>Cicer arietinum</i> L. and <i>Lathyrus sativus</i> L. pulses. Journal of the Science of Food and Agriculture, 2015, 95, 179-185.	3.5	34
53	Effects of oral dosage form and storage period on the antioxidant properties of four species used in traditional herbal medicine. Phytotherapy Research, 2011, 25, 484-492.	5.8	33
54	Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 2016, 98, 283-298.	3.6	33

#	Article	IF	CITATIONS
55	Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Industrial Crops and Products, 2009, 30, 427-430.	5.2	31
56	Ārnica: A multivariate analysis of the botany and ethnopharmacology of a medicinal plant complex in the Iberian Peninsula and the Balearic Islands. Journal of Ethnopharmacology, 2012, 144, 44-56.	4.1	31
57	Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food and Bioproducts Processing, 2020, 124, 307-319.	3.6	31
58	Postharvest quality changes in fresh-cut watercress stored under conventional and inert gas-enriched modified atmosphere packaging. Postharvest Biology and Technology, 2016, 112, 55-63.	6.0	29
59	A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules, 2019, 24, 2194.	3.8	29
60	Importance of local knowledge in plant resources management and conservation in two protected areas from Trás-os-Montes, Portugal. Journal of Ethnobiology and Ethnomedicine, 2011, 7, 36.	2.6	28
61	Development of hydrosoluble gels with Crataegus monogyna extracts for topical application: Evaluation of antioxidant activity of the final formulations. Industrial Crops and Products, 2013, 42, 175-180.	5.2	26
62	Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food and Function, 2015, 6, 55-61.	4.6	23
63	Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum) Tj ETQq1	. 1 0.7843 6.2	14 rgBT /Over
64	From famine plants to tasty and fragrant spices: Three Lamiaceae of general dietary relevance in traditional cuisine of Trás-os-Montes (Portugal). LWT - Food Science and Technology, 2011, 44, 543-548.	5.2	21
65	Challenges of traditional herbal teas: plant infusions and their mixtures with bioactive properties. Food and Function, 2019, 10, 5939-5951.	4.6	21
66	Scientific validation of synergistic antioxidant effects in commercialised mixtures of Cymbopogon citratus and Pterospartum tridentatum or Gomphrena globosa for infusions preparation. Food Chemistry, 2015, 185, 16-24.	8.2	20
67	Bioactive Properties of Tabebuia impetiginosa-Based Phytopreparations and Phytoformulations: A Comparison between Extracts and Dietary Supplements. Molecules, 2015, 20, 22863-22871.	3.8	19
68	Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase. Food and Function, 2016, 7, 79-83.	4.6	19
69	Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. European Journal of Lipid Science and Technology, 2010, 112, 1115-1121.	1.5	18
70	Phytopharmacologic preparations as predictors of plant bioactivity: A particular approach to Echinacea purpurea (L.) Moench antioxidant properties. Nutrition, 2016, 32, 834-839.	2.4	18
71	Flower extracts of Filipendula ulmaria (L.) Maxim inhibit the proliferation of the NCI-H460 tumour cell line. Industrial Crops and Products, 2014, 59, 149-153.	5.2	17
72	Bioactivity and phytochemical characterization of Arenaria montana L Food and Function, 2014, 5, 1848-1855.	4.6	16

#	Article	IF	CITATIONS
73	Topical anti-inflammatory plant species: Bioactivity of Bryonia dioica, Tamus communis and Lonicera periclymenum fruits. Industrial Crops and Products, 2011, 34, 1447-1454.	5.2	15
74	Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Industrial Crops and Products, 2013, 49, 169-176.	5.2	15
75	Chemical characterization and bioactive properties of aqueous and organic extracts of Geranium robertianum L Food and Function, 2016, 7, 3807-3814.	4.6	15
76	Postharvest changes in the phenolic profile of watercress induced by post-packaging irradiation and modified atmosphere packaging. Food Chemistry, 2018, 254, 70-77.	8.2	15
77	HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions. International Journal of Food Science, 2014, 2014, 1-5.	2.0	13
78	Electron beam and gamma irradiation as feasible conservation technologies for wild Arenaria montana L.: Effects on chemical and antioxidant parameters. Innovative Food Science and Emerging Technologies, 2016, 36, 269-276.	5.6	13
79	Chemical characterization and bioactive properties of Geranium molle L.: from the plant to the most active extract and its phytochemicals. Food and Function, 2016, 7, 2204-2212.	4.6	11
80	Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules, 2020, 25, 2151.	3.8	11
81	Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes. Journal of Food Science and Technology, 2016, 53, 2943-2956.	2.8	10
82	Phytochemical characterization and bioactive properties of Osyris quadripartita Salzm. ex Decne. leaves from Algeria. RSC Advances, 2016, 6, 72768-72776.	3.6	9
83	Combined effects of gamma-irradiation and preparation method on antioxidant activity and phenolic composition of Tuberaria lignosa. RSC Advances, 2015, 5, 14756-14767.	3.6	8
84	Plant-based remedies for wolf bites and rituals against wolves in the Iberian Peninsula: Therapeutic opportunities and cultural values for the conservation of biocultural diversity. Journal of Ethnopharmacology, 2017, 209, 124-139.	4.1	8
85	Stability of total folates/vitamin B9 in irradiated watercress and buckler sorrel during refrigerated storage. Food Chemistry, 2019, 274, 686-690.	8.2	8
86	Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters. Molecules, 2016, 21, 467.	3.8	7
87	Phenolic Compounds and Bioactive Properties of Ruscus aculeatus L. (Asparagaceae): The Pharmacological Potential of an Underexploited Subshrub. Molecules, 2021, 26, 1882.	3.8	7
88	Bioaccessibility of Macrominerals and Trace Elements from Tomato (Solanum lycopersicum L.) Farmers' Varieties. Foods, 2022, 11, 1968.	4.3	7
89	Detailed phytochemical characterization and bioactive properties of Myrtus nivelii Batt & Trab. Food and Function, 2017, 8, 3111-3119.	4.6	6
90	Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds. Food and Function, 2017, 8, 2485-2499.	4.6	6

#	ARTICLE	IF	CITATIONS
91	Antioxidant Potential of Wild Plant Foods. , 2016, , 209-232.		5
92	Conocimientos acerca de plantas en la nueva ruralidad. Cambio social y agro ecologÃa en el Parque Natural de Montesinho (Portugal). Perifèria: Revista De Recerca I Formació En Antropologia, 2007, 7, 1.	0.1	3
93	Watercress. , 2020, , 197-219.		1