
Donald S Gaydon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testing APSIM in a complex saline coastal cropping environment. Environmental Modelling and Software, 2022, 147, 105239.	1.9	9
2	Integrating gender and farmer's preferences in a discussion support tool for crop choice. Agricultural Systems, 2022, 195, 103300.	3.2	4
3	How we used APSIM to simulate conservation agriculture practices in the rice-wheat system of the Eastern Gangetic Plains. Field Crops Research, 2022, 275, 108344.	2.3	25
4	Sustainable groundwater use in the Eastern Gangetic Plains requires region-specific solutions. Groundwater for Sustainable Development, 2022, 18, 100798.	2.3	0
5	Model-based evaluation of rainfed lowland rice responses to N fertiliser in variable hydro-edaphic wetlands of East Africa. Field Crops Research, 2022, 285, 108602.	2.3	4
6	Tweaking Pakistani Punjab rice-wheat management to maximize productivity within nitrate leaching limits. Field Crops Research, 2021, 260, 107964.	2.3	13
7	Puddled and zero-till unpuddled transplanted rice are each best suited to different environments – An example from two diverse locations in the Eastern Gangetic Plains of Bangladesh. Field Crops Research, 2021, 262, 108031.	2.3	11
8	Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Scientific Reports, 2021, 11, 7041.	1.6	29
9	Opportunities and risks with early sowing of sunflower in a salt-affected coastal region of the Ganges Delta. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	13
10	Options for increasing Boro rice production in the saline coastal zone of Bangladesh. Field Crops Research, 2021, 264, 108089.	2.3	16
11	Conservation agriculture enhances the rice-wheat system of the Eastern Gangetic Plains in some environments, but not in others. Field Crops Research, 2021, 265, 108109.	2.3	10
12	Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches. Agricultural Water Management, 2021, 258, 107146.	2.4	4
13	Improved water management practices improve cropping system profitability and smallholder farmers' incomes. Agricultural Water Management, 2020, 242, 106411.	2.4	14
14	Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agricultural Systems, 2020, 184, 102906.	3.2	32
15	Farmers' perceptions and management of risk in rice/shrimp farming systems in South-West Coastal Bangladesh. Land Use Policy, 2020, 95, 104577.	2.5	30
16	A water and salt balance model for the polders and islands in the Ganges delta. Journal of Hydrology, 2020, 587, 125008.	2.3	26
17	Farmers' perceptions and management of risk in rice-based farming systems of south-west coastal Bangladesh. Land Use Policy, 2019, 86, 177-188.	2.5	14
18	Land Situation and Sowing Date Effects Growth and Yield of Crops in the Rice-Pulse Based Cropping Systems of Coastal India. Proceedings (mdpi), 2019, 36, 152.	0.2	1

DONALD S GAYDON

#	Article	IF	CITATIONS
19	Modelling Yield and Seasonal Soil Salinity Dynamics in Rice-Grasspea Cropping System for the Coastal Saline Zone of West Bengal, India. Proceedings (mdpi), 2019, 36, 146.	0.2	2
20	Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains. Soil Research, 2019, 57, 883.	0.6	31
21	Analyzing crop yield gaps and their causes using cropping systems modelling–A case study of the Punjab rice-wheat system, Pakistan. Field Crops Research, 2019, 232, 119-130.	2.3	31
22	Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models. Journal of the Science of Food and Agriculture, 2018, 98, 865-871.	1.7	8
23	Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments. Agricultural Systems, 2018, 162, 107-122.	3.2	10
24	Bio-economic evaluation of cropping systems for saline coastal Bangladesh: III Benefits of adaptation in current and future environments. Agricultural Systems, 2018, 161, 28-41.	3.2	20
25	Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. European Journal of Agronomy, 2018, 100, 44-55.	1.9	68
26	Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 2018, 220, 46-56.	2.3	52
27	Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Research, 2018, 229, 27-36.	2.3	18
28	Mechanised dry seeding is an adaptation strategy for managing climate risks and reducing labour costs in rainfed rice production in lowland Lao PDR. Field Crops Research, 2018, 225, 32-46.	2.3	18
29	Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 2017, 204, 52-75.	2.3	170
30	Bio-economic evaluation of cropping systems for saline coastal Bangladesh: II. Economic viability in historical and future environments. Agricultural Systems, 2017, 155, 103-115.	3.2	24
31	Smallholder farmers managing climate risk in India: 2. Is it climate-smart?. Agricultural Systems, 2017, 151, 61-72.	3.2	27
32	Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach. Agricultural Water Management, 2017, 189, 111-122.	2.4	28
33	Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate. Agricultural Systems, 2017, 150, 54-66.	3.2	25
34	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	1.6	41
35	Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Research, 2016, 197, 83-96.	2.3	65
36	A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. Environmental Modelling and Software, 2016, 85, 332-341.	1.9	18

DONALD S GAYDON

#	Article	IF	CITATIONS
37	Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 2015, 21, 1328-1341.	4.2	339
38	Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean. Field Crops Research, 2015, 173, 68-80.	2.3	48
39	Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer?. Field Crops Research, 2015, 173, 81-94.	2.3	41
40	Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management, 2015, 160, 132-143.	2.4	51
41	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	1.9	31
42	Applicability of APSIM to capture the effectiveness of irrigation management decisions in rice-based cropping sequence in the Upper-Gangetic Plains of India. Paddy and Water Environment, 2015, 13, 325-335.	1.0	12
43	APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 2014, 62, 327-350.	1.9	1,173
44	Climate Change Perception and Adaptation Options for Agriculture in Southern Khulna of Bangladesh. Applied Ecology and Environmental Sciences, 2014, 2, 25-31.	0.1	19
45	Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy, 2013, 44, 109-123.	1.9	106
46	The best farm-level irrigation strategy changes seasonally with fluctuating water availability. Agricultural Water Management, 2012, 103, 33-42.	2.4	34
47	Comparing water options for irrigation farmers using Modern Portfolio Theory. Agricultural Water Management, 2012, 115, 1-9.	2.4	24
48	Rice in cropping systems—Modelling transitions between flooded and non-flooded soil environments. European Journal of Agronomy, 2012, 39, 9-24.	1.9	86
49	Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. European Journal of Agronomy, 2012, 39, 35-43.	1.9	58
50	Rice growth, yield and water productivity responses to irrigation scheduling prior to the delayed application of continuous flooding in south-east Australia. Agricultural Water Management, 2011, 98, 1799-1807.	2.4	54
51	Rats in rice: linking crop and pest models to explore management strategies. Wildlife Research, 2011, 38, 560.	0.7	8
52	The effects of mulch and irrigation management on wheat in Punjab, India—Evaluation of the APSIM model. Field Crops Research, 2011, 124, 1-13.	2.3	61
53	Introducing irrigation efficiencies: prospects for flood-dependent biodiversity in a rice agro-ecosystem. Environmental Conservation, 2011, 38, 353-365.	0.7	9
54	More than Ecoâ€efficiency is Required to Improve Food Security. Crop Science, 2010, 50, S-132.	0.8	18

#	Article	IF	CITATIONS
55	A methodology for up-scaling irrigation losses. Irrigation Science, 2009, 27, 347-356.	1.3	11
56	Production risks and water use benefits of summer crop production on the south coast of Western Australia. Australian Journal of Agricultural Research, 2005, 56, 597.	1.5	14
57	Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. European Journal of Agronomy, 2002, 18, 159-169.	1.9	70