Stephania Doppiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431845/publications.pdf Version: 2024-02-01

STEDHANIA ΠΟΟDIII

#	Article	IF	CITATIONS
1	Development of a Kinetic Model for the Redox Reactions of Co2.4Ni0.6O4 and SiO2/Co2.4Ni0.6O4 Oxides for Thermochemical Energy Storage. Materials, 2022, 15, 3695.	1.3	4
2	Development and stabilization of Co2.4Ni0.6O4 material for long-term thermochemical energy storage. Journal of Energy Storage, 2022, 52, 104876.	3.9	4
3	Li4(OH)3Br/MgO shape stabilized composite as novel high temperature thermal energy storage material. Journal of Energy Storage, 2022, 52, 104921.	3.9	0
4	Tailored transition temperature plastic crystals with enhanced thermal energy storage capacity. Solar Energy Materials and Solar Cells, 2021, 220, 110848.	3.0	19
5	Li4(OH)3Br-Based Shape Stabilized Composites for High-Temperature TES Applications: Selection of the Most Convenient Supporting Material. Nanomaterials, 2021, 11, 1279.	1.9	4
6	Experimental Investigations on Electric-Field-Induced Crystallization in Erythritol. Materials, 2021, 14, 5110.	1.3	5
7	Development of Co3-xNixO4 materials for thermochemical energy storage at lower red-ox temperature. Solar Energy Materials and Solar Cells, 2021, 230, 111194.	3.0	16
8	Study of peritectic compound Li4(OH)3Br for high temperature thermal energy storage in solar power applications. Solar Energy Materials and Solar Cells, 2021, 230, 111259.	3.0	5
9	NPG–TRIS Thermal Storage System. Quantification of the Limiting Processes: Sublimation and Water's Adsorption. Crystals, 2021, 11, 1200.	1.0	1
10	Study of the Phase Transitions in the Binary System NPG-TRIS for Thermal Energy Storage Applications. Materials, 2020, 13, 1162.	1.3	15
11	The Li2SO4–Na2SO4 System for Thermal Energy Storage. Materials, 2019, 12, 3658.	1.3	3
12	Neopentyl Glycol as Active Supporting Media in Shape-Stabilized PCMs. Materials, 2019, 12, 3169.	1.3	17
13	Solid-State Reactions for the Storage of Thermal Energy. Nanomaterials, 2019, 9, 226.	1.9	4
14	Thermal emissivity spectra and structural phase transitions of the eutectic Mg-51%Zn alloy: A candidate for thermal energy storage. Journal of Alloys and Compounds, 2016, 684, 62-67.	2.8	9
15	Experimental investigation of Mg-Zn-Al metal alloys for latent heat storage application. Journal of Alloys and Compounds, 2016, 685, 724-732.	2.8	25
16	A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method. Carbon, 2015, 87, 434-443.	5.4	57
17	Thermodynamic study of the eutectic Mg49–Zn51 alloy used for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2014, 117, 93-99.	2.0	24
18	Effect of Mesopore Ordering in Otherwise Similar Micro/Mesoporous Carbons on the High-Rate Performance of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2014, 118, 27715-27720.	1.5	28

STEPHANIA DOPPIU

#	Article	IF	CITATIONS
19	Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system. Applied Energy, 2013, 109, 387-393.	5.1	86
20	Post-Industrial Ceramics Compatibility With Heat Transfer Fluids for Low-Cost Thermal Energy Storage Applications in CSP. , 2012, , .		0
21	Formation of Ca(BH4)2from Hydrogenation of CaH2+MgB2Composite. Journal of Physical Chemistry C, 2008, 112, 2743-2749.	1.5	106
22	A Numerical Algorithm for Magnetohydrodynamics of Ablated Materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 3674-3685.	0.9	11
23	Characterisation of complex hydrides synthesised or modified by ball milling. International Journal of Materials Research, 2008, 99, 553-556.	0.1	2
24	In situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling. Journal of Alloys and Compounds, 2007, 427, 204-208.	2.8	93
25	Determination of the Heat of Hydride Formation/Decomposition by High-Pressure Differential Scanning Calorimetry (HP-DSC). Journal of Physical Chemistry B, 2007, 111, 13301-13306.	1.2	54
26	Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Materialia, 2007, 55, 3951-3958.	3.8	350
27	Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Materialia, 2007, 56, 841-846.	2.6	430
28	Thermodynamic properties and absorption–desorption kinetics of Mg87Ni10Al3 alloy synthesised by reactive ball milling under H2 atmosphere. Journal of Alloys and Compounds, 2005, 404-406, 27-30.	2.8	20
29	lgnition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures. Journal of Materials Research, 2004, 19, 1558-1566.	1.2	33
30	Exchange bias effects in Fe nanoparticles embedded in an antiferromagnetic Cr2O3matrix. Nanotechnology, 2004, 15, S211-S214.	1.3	62
31	Controlled Reduction of NiO Using Reactive Ball Milling under Hydrogen Atmosphere Leading to Niâ~'NiO Nanocomposites. Chemistry of Materials, 2004, 16, 5664-5669.	3.2	42
32	Evolution of amorphous and nanocrystalline phases in mechanically alloyed Mg1.9M0.1Ni (M=Ti,Zr,V). Journal of Alloys and Compounds, 2004, 381, 66-71.	2.8	17
33	Combustion synthesis of mechanically activated powders in the Ta–Si system. Journal of Alloys and Compounds, 2004, 385, 269-275.	2.8	40
34	A Direct View of the Self Combustion Behaviour of TiC System under Milling. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 215-220.	0.1	19
35	The self-combustion of structurally co-deformed powder mixtures: a direct view of the process. Journal Physics D: Applied Physics, 2003, 36, 1917-1922.	1.3	13
36	Combustion synthesis of mechanically activated powders in the Nb–Si system. Journal of Materials Research, 2002, 17, 1992-1999.	1.2	24

STEPHANIA DOPPIU

#	Article	IF	CITATIONS
37	Metal–metal oxides prepared by MSR and SHS techniques. Solid State Ionics, 2001, 141-142, 649-656.	1.3	13
38	Mechanochemistry of the titanium–silicon system: Compositional effects. Journal of Materials Research, 2001, 16, 1266-1279.	1.2	19
39	Self-Propagating Reactions in the Ti–Si System: A SHS-MASHS Comparative Study. Journal of Materials Synthesis and Processing, 2000, 8, 377-383.	0.3	24
40	MSR Reduction of Hexachlorobenzene. Journal of Materials Synthesis and Processing, 2000, 8, 295-300.	0.3	8
41	Thermal and Mechanochemical Self-Propagating Degradation of Chloro-organic Compounds:Â The Case of Hexachlorobenzene over Calcium Hydride. Industrial & Engineering Chemistry Research, 1999, 38, 3218-3224.	1.8	52
42	Reduction of Polychlorinated Dibenzodioxins and Dibenzofurans in Contaminated Muds by Mechanically Induced Combustion Reactions. Environmental Science & Technology, 1999, 33, 2485-2488.	4.6	38