Guicai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431807/publications.pdf

Version: 2024-02-01

	218677	265206
1,821	26	42
citations	h-index	g-index
56	56	2341
docs citations	times ranked	citing authors
	citations 56	1,821 26 citations h-index 56 56

#	Article	IF	CITATIONS
1	Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. Journal of Materials Chemistry B, 2022, 10, 1582-1590.	5 . 8	9
2	Construction and Biocompatibility Evaluation of Fibroin/Sericin-Based Scaffolds. ACS Biomaterials Science and Engineering, 2022, 8, 1494-1505.	5.2	7
3	Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 747-768.	3.5	6
4	Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2022, 209, 1867-1881.	7.5	15
5	Convenient in situ synthesis of injectable lysine-contained peptide functionalized hydrogels for spinal cord regeneration. Applied Materials Today, 2022, 27, 101506.	4.3	8
6	Soft hydrogel promotes dorsal root ganglion by upregulating gene expression of Ntn4 and Unc5B. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111503.	5 . 0	7
7	Brain-Targeted Dual Site-Selective Functionalized Poly(\hat{l}^2 -Amino Esters) Delivery Platform for Nerve Regeneration. Nano Letters, 2021, 21, 3007-3015.	9.1	21
8	Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. Science Advances, 2021, 7, .	10.3	42
9	The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells International, 2021, 2021, 1-13.	2.5	27
10	Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. Nanotechnology Reviews, 2021, 10, 50-61.	5.8	23
11	Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Applied Materials Today, 2020, 18, 100468.	4.3	19
12	Targeting PTEN to regulate autophagy and promote the repair of injured neurons. Brain Research Bulletin, 2020, 165, 161-168.	3.0	9
13	Effect of anisotropic silk fibroin topographies on dorsal root ganglion. Journal of Materials Research, 2020, 35, 1738-1748.	2.6	7
14	Synthesis and Evaluation of Cytocompatible Alkyne-Containing Poly(\hat{l}^2 -amino ester)-Based Hydrogels Functionalized via Click Reaction. ACS Macro Letters, 2020, 9, 1391-1397.	4.8	13
15	Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors, 2020, 20, 2781.	3.8	41
16	Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020, 399, 125795.	12.7	86
17	Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research, 2020, 2020, 2603048.	5 . 7	28
18	Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 37397-37410.	8.0	58

#	Article	IF	CITATIONS
19	PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. Journal of Biomedical Materials Research - Part A, 2019, 107, 1273-1283.	4.0	40
20	Comprehensive, High Throughput Screening of Neuron Behavior on Gradient Micro-Alignment Topographies. , 2019, , .		1
21	Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloids and Surfaces B: Biointerfaces, 2019, 176, 341-351.	5.0	15
22	Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 104-113.	4.0	62
23	Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 689-697.	5.0	28
24	Spatially featured porous chitosan conduits with micropatterned inner wall and seamless sidewall for bridging peripheral nerve regeneration. Carbohydrate Polymers, 2018, 194, 225-235.	10.2	46
25	Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. Journal of Biomedical Materials Research - Part A, 2018, 106, 1951-1964.	4.0	37
26	Fabrication of alignment polycaprolactone scaffolds by combining use of electrospinning and micromolding for regulating Schwann cells behavior. Journal of Biomedical Materials Research - Part A, 2018, 106, 3123-3134.	4.0	19
27	Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohydrate Polymers, 2017, 171, 39-49.	10.2	68
28	Nanoengineered porous chitosan/CaTiO3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 158, 57-67.	5.0	31
29	Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids and Surfaces B: Biointerfaces, 2016, 143, 547-556.	5.0	69
30	RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. Colloids and Surfaces B: Biointerfaces, 2016, 144, 81-89.	5.0	45
31	Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Molecular Neurobiology, 2016, 53, 28-39.	4.0	79
32	Twin-Arginine Translocation Peptide Conjugated Epirubicin-Loaded Nanoparticles for Enhanced Tumor Penetrating and Targeting. Journal of Pharmaceutical Sciences, 2015, 104, 4185-4196.	3.3	22
33	Fabrication and characterization of polyacrylamide/silk fibroin hydrogels for peripheral nerve regeneration. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 899-916.	3.5	26
34	Interaction between heparin and fibronectin: Using quartz crystal microbalance with dissipation, immunochemistry and isothermal titration calorimetry. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1074-1084.	1.0	0
35	Tailoring of chitosan scaffolds with heparin and \hat{l}^3 -aminopropyltriethoxysilane for promoting peripheral nerve regeneration. Colloids and Surfaces B: Biointerfaces, 2015, 134, 413-422.	5.0	14
36	Nanoparticle mediated controlled delivery of dual growth factors. Science China Life Sciences, 2014, 57, 256-262.	4.9	23

#	Article	IF	CITATIONS
37	Regulating Schwann Cells Growth by Chitosan Micropatterning for Peripheral Nerve Regeneration In Vitro. Macromolecular Bioscience, 2014, 14, 1067-1075.	4.1	28
38	Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery. Materials Science and Engineering C, 2014, 42, 111-115.	7.3	32
39	Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydrate Polymers, 2014, 101, 718-726.	10.2	42
40	Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials, 2014, 35, 8503-8513.	11.4	87
41	Facile conjugation of heparin onto titanium surfaces via dopamine inspired coatings for improving blood compatibility. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 832-840.	1.0	8
42	Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Applied Surface Science, 2013, 273, 24-31.	6.1	58
43	Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Experimental Cell Research, 2013, 319, 2663-2672.	2.6	34
44	Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids and Surfaces B: Biointerfaces, 2013, 110, 199-207.	5.0	62
45	Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium: In situ investigation by quartz crystal microbalance with dissipationÂandÂimmunochemistry. Journal of Bioscience and Bioengineering, 2013, 116, 235-245.	2.2	6
46	Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids and Surfaces B: Biointerfaces, 2013, 102, 457-465.	5.0	23
47	Tailoring of the Titanium Surface by Immobilization of Heparin/Fibronectin Complexes for Improving Blood Compatibility and Endothelialization: An in Vitro Study. Biomacromolecules, 2011, 12, 1155-1168.	5.4	86
48	An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex. Cytokine, 2011, 56, 208-217.	3.2	50
49	Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality. Physics Procedia, 2011, 18, 112-121.	1.2	17
50	The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials, 2011, 32, 4691-4703.	11.4	202
51	Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility. Colloids and Surfaces B: Biointerfaces, 2010, 81, 255-262.	5.0	33
52	Regulatory Effects of Gradient Microtopographies on Synapse Formation and Neurite Growth in Hippocampal Neurons. Journal of Micromechanics and Microengineering, 0, , .	2.6	0