Guicai Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431807/publications.pdf Version: 2024-02-01

Curcarla

#	Article	IF	CITATIONS
1	The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials, 2011, 32, 4691-4703.	11.4	202
2	Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials, 2014, 35, 8503-8513.	11.4	87
3	Tailoring of the Titanium Surface by Immobilization of Heparin/Fibronectin Complexes for Improving Blood Compatibility and Endothelialization: An in Vitro Study. Biomacromolecules, 2011, 12, 1155-1168.	5.4	86
4	Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020, 399, 125795.	12.7	86
5	Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Molecular Neurobiology, 2016, 53, 28-39.	4.0	79
6	Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids and Surfaces B: Biointerfaces, 2016, 143, 547-556.	5.0	69
7	Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohydrate Polymers, 2017, 171, 39-49.	10.2	68
8	Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids and Surfaces B: Biointerfaces, 2013, 110, 199-207.	5.0	62
9	Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 104-113.	4.0	62
10	Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Applied Surface Science, 2013, 273, 24-31.	6.1	58
11	Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 37397-37410.	8.0	58
12	An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex. Cytokine, 2011, 56, 208-217.	3.2	50
13	Spatially featured porous chitosan conduits with micropatterned inner wall and seamless sidewall for bridging peripheral nerve regeneration. Carbohydrate Polymers, 2018, 194, 225-235.	10.2	46
14	RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. Colloids and Surfaces B: Biointerfaces, 2016, 144, 81-89.	5.0	45
15	Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydrate Polymers, 2014, 101, 718-726.	10.2	42
16	Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. Science Advances, 2021, 7, .	10.3	42
17	Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors, 2020, 20, 2781.	3.8	41
18	PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. Journal of Biomedical Materials Research - Part A, 2019, 107, 1273-1283.	4.0	40

Guicai Li

#	Article	IF	CITATIONS
19	Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. Journal of Biomedical Materials Research - Part A, 2018, 106, 1951-1964.	4.0	37
20	Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface. Experimental Cell Research, 2013, 319, 2663-2672.	2.6	34
21	Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility. Colloids and Surfaces B: Biointerfaces, 2010, 81, 255-262.	5.0	33
22	Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery. Materials Science and Engineering C, 2014, 42, 111-115.	7.3	32
23	Nanoengineered porous chitosan/CaTiO3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 158, 57-67.	5.0	31
24	Regulating Schwann Cells Growth by Chitosan Micropatterning for Peripheral Nerve Regeneration In Vitro. Macromolecular Bioscience, 2014, 14, 1067-1075.	4.1	28
25	Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 689-697.	5.0	28
26	Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research, 2020, 2020, 2603048.	5.7	28
27	The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells International, 2021, 2021, 1-13.	2.5	27
28	Fabrication and characterization of polyacrylamide/silk fibroin hydrogels for peripheral nerve regeneration. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 899-916.	3.5	26
29	Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion. Colloids and Surfaces B: Biointerfaces, 2013, 102, 457-465.	5.0	23
30	Nanoparticle mediated controlled delivery of dual growth factors. Science China Life Sciences, 2014, 57, 256-262.	4.9	23
31	Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. Nanotechnology Reviews, 2021, 10, 50-61.	5.8	23
32	Twin-Arginine Translocation Peptide Conjugated Epirubicin-Loaded Nanoparticles for Enhanced Tumor Penetrating and Targeting. Journal of Pharmaceutical Sciences, 2015, 104, 4185-4196.	3.3	22
33	Brain-Targeted Dual Site-Selective Functionalized Poly(β-Amino Esters) Delivery Platform for Nerve Regeneration. Nano Letters, 2021, 21, 3007-3015.	9.1	21
34	Fabrication of alignment polycaprolactone scaffolds by combining use of electrospinning and micromolding for regulating Schwann cells behavior. Journal of Biomedical Materials Research - Part A, 2018, 106, 3123-3134.	4.0	19
35	Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Applied Materials Today, 2020, 18, 100468.	4.3	19
36	Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality. Physics Procedia, 2011, 18, 112-121.	1.2	17

Guicai Li

#	Article	IF	CITATIONS
37	Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloids and Surfaces B: Biointerfaces, 2019, 176, 341-351.	5.0	15
38	Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2022, 209, 1867-1881.	7.5	15
39	Tailoring of chitosan scaffolds with heparin and \hat{I}^3 -aminopropyltriethoxysilane for promoting peripheral nerve regeneration. Colloids and Surfaces B: Biointerfaces, 2015, 134, 413-422.	5.0	14
40	Synthesis and Evaluation of Cytocompatible Alkyne-Containing Poly(β-amino ester)-Based Hydrogels Functionalized via Click Reaction. ACS Macro Letters, 2020, 9, 1391-1397.	4.8	13
41	Targeting PTEN to regulate autophagy and promote the repair of injured neurons. Brain Research Bulletin, 2020, 165, 161-168.	3.0	9
42	Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. Journal of Materials Chemistry B, 2022, 10, 1582-1590.	5.8	9
43	Facile conjugation of heparin onto titanium surfaces via dopamine inspired coatings for improving blood compatibility. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 832-840.	1.0	8
44	Convenient in situ synthesis of injectable lysine-contained peptide functionalized hydrogels for spinal cord regeneration. Applied Materials Today, 2022, 27, 101506.	4.3	8
45	Effect of anisotropic silk fibroin topographies on dorsal root ganglion. Journal of Materials Research, 2020, 35, 1738-1748.	2.6	7
46	Soft hydrogel promotes dorsal root ganglion by upregulating gene expression of Ntn4 and Unc5B. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111503.	5.0	7
47	Construction and Biocompatibility Evaluation of Fibroin/Sericin-Based Scaffolds. ACS Biomaterials Science and Engineering, 2022, 8, 1494-1505.	5.2	7
48	Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium: In situ investigation by quartz crystal microbalance with dissipationÂandÂimmunochemistry. Journal of Bioscience and Bioengineering, 2013, 116, 235-245.	2.2	6
49	Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 747-768.	3.5	6
50	Comprehensive, High Throughput Screening of Neuron Behavior on Gradient Micro-Alignment Topographies. , 2019, , .		1
51	Interaction between heparin and fibronectin: Using quartz crystal microbalance with dissipation, immunochemistry and isothermal titration calorimetry. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1074-1084.	1.0	0
52	Regulatory Effects of Gradient Microtopographies on Synapse Formation and Neurite Growth in Hippocampal Neurons. Journal of Micromechanics and Microengineering, 0, , .	2.6	0