Dongdi Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets. International Journal of Plasticity, 2021, 136, 102878.	4.1	136
2	Grain size effect on tensile properties and slip systems of pure magnesium. Acta Materialia, 2021, 206, 116604.	3.8	127
3	Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) alloy. Journal of Alloys and Compounds, 2011, 509, 1696-1704.	2.8	106
4	In-situ analysis of the tensile deformation modes and anisotropy of extruded Mg-10Gd-3Y-0.5Zr (wt.%) at elevated temperatures. International Journal of Plasticity, 2016, 84, 255-276.	4.1	91
5	Comparison of microstructure in Mg–10Y–5Gd–0.5Zr and Mg–10Y–5Gd–2Zn–0.5Zr alloys by conventional casting. Journal of Alloys and Compounds, 2009, 477, 374-378.	2.8	58
6	The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4Zr Alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3105-3112.	2.6	56
7	Thermal properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) alloy. Journal of Alloys and Compounds, 2009, 487, 560-563.	2.8	53
8	Microstructure, texture and mechanical properties evolution of extruded fine-grained Mg-Y sheets during annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 24-35.	2.6	51
9	Plastic anisotropy and deformation behavior of extruded Mg-Y sheets at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 598-608.	2.6	49
10	Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 72-79.	2.6	48
11	The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys. Journal of Alloys and Compounds, 2016, 660, 252-257.	2.8	43
12	Solute segregation assisted nanocrystallization of a cold-rolled Mg–Ag alloy during annealing. Scripta Materialia, 2020, 177, 69-73.	2.6	43
13	Tensile creep behavior and microstructure evolution of extruded Mg–10Gd–3Y–0.5Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 150-159.	2.6	42
14	Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting. Journal of Materials Science and Technology, 2018, 34, 1067-1075.	5.6	42
15	Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy. Materials Characterization, 2015, 99, 25-37.	1.9	40
16	Microstructure refinement of Mg-Al-RE alloy by Gd addition. Materials Letters, 2019, 246, 125-128.	1.3	39
17	In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6438-6452.	1.1	34
18	Effects of Y content and temperature on the damping capacity of extruded Mg-Y sheets. Journal of Magnesium and Alloys, 2019, 7, 522-528.	5.5	34

Dongdi Yin

#	Article	IF	CITATIONS
19	Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy. Scripta Materialia, 2021, 191, 219-224.	2.6	33
20	Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wtÂpct). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3338-3350.	1.1	32
21	In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250°C. Materials Characterization, 2016, 116, 8-17.	1.9	32
22	Effect of heat treatment and pre-deformation on damping capacity of cast Mg-Y binary alloys. Journal of Alloys and Compounds, 2017, 699, 976-982.	2.8	32
23	Creep behavior of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) at 573K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 546, 239-247.	2.6	31
24	Effects of precipitate on the slip activity and plastic heterogeneity of Mg-11Y-5Gd-2Zn-0.5Zr (wt. %) during room temperature compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140738.	2.6	31
25	Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys. Journal of Magnesium and Alloys, 2022, 10, 195-208.	5.5	31
26	The impression creep behavior and microstructure evolution of cast and cast-then-extruded Mg–10Gd–3Y–0.5Zr (wt%). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 313-324.	2.6	30
27	Atomic structure of γ″ phase in Mg–Gd–Y–Ag alloy induced by Ag addition. Philosophical Magazine, 202 99, 1957-1969.	19 _{0.7}	27
28	Quantitative Investigation on the Slip/Twinning Activity and Cracking Behavior During Low-Cycle Fatigue of an Extruded Mg-3Y Sheet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 332-349.	1.1	27
29	Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Materials Characterization, 2013, 78, 37-46.	1.9	23
30	Effects of Y on the Deformation Mechanisms of Extruded Mg-Y Sheets During Room-Temperature Compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2738-2751.	1.1	23
31	Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy. Scripta Materialia, 2013, 68, 885-888.	2.6	22
32	Tensile and compressive deformation behavior of peak-aged cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy at elevated temperatures. Journal of Materials Science, 2016, 51, 10464-10477.	1.7	22
33	Anomalous Tension Twinning Activity in Extruded Mg Sheet During Hard-Orientation Loading at Room Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 449-456.	1.1	22
34	Dry sliding wear behaviour of Mg–10Gd–3Y–0.4Zr alloy. Materials & Design, 2012, 42, 223-229.	5.1	21
35	Forgeability and die-forging forming of direct chill casting Mg–Nd–Zn–Zr magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3690-3694.	2.6	20
36	Creep and fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%). Journal of Materials Science, 2012, 47, 6263-6275.	1.7	20

Dongdi Yin

#	Article	IF	CITATIONS
37	Effects of semisolid treatment and ECAP on the microstructure and mechanical properties of Mg-6.52Zn-0.95Y alloy with icosahedral phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 283-291.	2.6	20
38	Quantitative study on slip/twinning activity and theoretical critical shear strength of Mg alloy with Y addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139801.	2.6	19
39	Anisotropic cyclic deformation behavior of an extruded Mg-3Y alloy sheet with rare earth texture. Journal of Magnesium and Alloys, 2022, 10, 1581-1597.	5.5	19
40	Quantitative analysis of the deformation modes and cracking modes during low-cycle fatigue of a rolled AZ31B magnesium alloy: The influence of texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143103.	2.6	18
41	Effects of ECAP and Annealing Treatment on the Microstructure and Mechanical Properties of Mg-1Y (wt. %) Binary Alloy. Metals, 2017, 7, 119.	1.0	16
42	Investigation on Slip Activity and Plastic Heterogeneity of Aged Mg–10Y Sheets During Compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 535-555.	1.1	16
43	The deformation modes and transferability during low-cycle fatigue of Mg and Mg–3Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142838.	2.6	14
44	Modification of Eutectic Si in Al-Si-(Ba) Alloy by Inducing a Novel 9R Structure in Twins. Materials, 2018, 11, 1151.	1.3	13
45	High-ductility fine-grained Mg-1.92Zn-0.34Y alloy fabricated by semisolid and then hot extrusion. Journal of Magnesium and Alloys, 2023, 11, 533-542.	5.5	12
46	Unexpected high-temperature brittleness of a Mg-Gd-Y-Ag alloy. Journal of Magnesium and Alloys, 2022, 10, 2510-2515.	5.5	11
47	A statistical analysis of compressive deformation mechanisms in an extruded Mg–3Y sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141927.	2.6	11
48	Copper Cathode's Ablated Structure Operated in a 50 Megawatt Arc Heater. Journal of Thermophysics and Heat Transfer, 2019, 33, 1055-1064.	0.9	9
49	Atomic-scale three-dimensional structural characterisation of twin interface in Mg alloys. Philosophical Magazine Letters, 2020, 100, 392-401.	0.5	9
50	The Ductility Variation of High-Pressure Die-Cast AE44 Alloy: The Role of Inhomogeneous Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2274-2286.	1.1	8
51	Characterization of phases in Mg-10Y-5Gd-2Zn-0.5Zr alloy processed by heat treatment. Transactions of Nonferrous Metals Society of China, 2010, 20, 2076-2080.	1.7	7
52	Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2421-2443.	1.1	7
53	Extra Strain Hardening in High Pressure Die Casting Mg-Al-RE Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1487-1492.	1.1	5
54	Compressive Creep Behaviour of Extruded Mg-10Gd-3Y-0.5Zr (wt.%) Alloy. Materials Science Forum, 0, 765, 568-573.	0.3	4

0

#	Article	IF	CITATIONS
55	Experimental Study on the Elastic–plastic Transitions of the Hetero-structured High Pressure Die Casting Mg–Al-RE Alloy. Experimental Mechanics, 2021, 61, 1143-1152.	1.1	3

56 Applicability of Mg -Zn-(Y, Gd) Alloys for Engine Pistons. , 2016, , 325-330.