Olga Barrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoscopic model of hydrogen embrittlement in particle strengthened materials. Philosophical Magazine, 2022, 102, 698-717.	1.6	0
2	High Resolution Micro-Computed Tomography Reveals a Network of Collagen Channels in the Body Region of the Knee Meniscus. Annals of Biomedical Engineering, 2021, 49, 2273-2281.	2.5	15
3	The Functionally Grading Elastic and Viscoelastic Properties of the Body Region of the Knee Meniscus. Annals of Biomedical Engineering, 2021, 49, 2421-2429.	2.5	16
4	A unified modelling and simulation for coupled anomalous transport in porous media and its finite element implementation. Computational Mechanics, 2021, 68, 1267-1282.	4.0	6
5	Circumferential crack modeling of thin cylindrical shells in modal deformation. European Journal of Mechanics, A/Solids, 2021, 90, 104360.	3.7	3
6	The Human Meniscus Behaves as a Functionally Graded Fractional Porous Medium under Confined Compression Conditions. Applied Sciences (Switzerland), 2021, 11, 9405.	2.5	11
7	A procedure for slicing and characterizing soft heterogeneous and irregular-shaped tissue. Materials Today: Proceedings, 2020, 33, 2020-2026.	1.8	6
8	Development and optimisation of micromechanical testing techniques to study the properties of meniscal tissue. Materials Today: Proceedings, 2020, 33, 1954-1958.	1.8	6
9	Advanced microscopy analysis of the micro-nanoscale architecture of human menisci. Scientific Reports, 2019, 9, 18732.	3.3	22
10	Viscoelastic material models for more accurate polyethylene wear estimation. Journal of Strain Analysis for Engineering Design, 2018, 53, 302-312.	1.8	14
11	Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science, 2018, 53, 6251-6290.	3.7	249
12	Experimental Characterization of the Human Meniscal Tissue. , 2018, , .		4
13	The finite element implementation of 3D fractional viscoelastic constitutive models. Finite Elements in Analysis and Design, 2018, 146, 28-41.	3.2	37
14	On the behavior of a three-dimensional fractional viscoelastic constitutive model. Meccanica, 2017, 52, 2127-2142.	2.0	51
15	Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals. Computational Materials Science, 2016, 122, 219-228.	3.0	102
16	A micromechanical image-based model for the featureless zone of a Fe–Ni dissimilar weld. Philosophical Magazine, 2014, 94, 1361-1377.	1.6	13
17	Computational modelling of hydrogen embrittlement in welded structures. Philosophical Magazine, 2013, 93, 2680-2700.	1.6	18
18	Computational Modelling of Hydrogen Embrittlement in Weld Joints of Subsea Oil and Gas Components. , 2013, , .		1