
## Yaokang Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431645/publications.pdf Version: 2024-02-01



YAOKANG LV

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. Journal of Power Sources, 2012, 209, 152-157.                                                                  | 7.8  | 425       |
| 2  | Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric<br>supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.                                                            | 10.3 | 188       |
| 3  | Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€Stable and Fast Proton oupled Charge<br>Storage Kinetics. Advanced Materials, 2021, 33, e2104148.                                                                        | 21.0 | 174       |
| 4  | Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242.                                                                  | 12.7 | 160       |
| 5  | Template-Free, Self-Doped Approach to Porous Carbon Spheres with High N/O Contents for<br>High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7024-7034.                                       | 6.7  | 147       |
| 6  | Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling<br>all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A,<br>2019, 7, 816-826. | 10.3 | 134       |
| 7  | Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a<br>"water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.                                           | 10.3 | 130       |
| 8  | <i>In situ</i> nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 611-621.                                       | 10.3 | 117       |
| 9  | Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.                                                                                                              | 10.3 | 110       |
| 10 | N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.                                                       | 5.2  | 105       |
| 11 | High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€V gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.                                              | 12.7 | 103       |
| 12 | Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chemical Communications, 2019, 55, 11219-11222.                                                                           | 4.1  | 101       |
| 13 | Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous and Mesoporous Materials, 2017, 253, 1-9.                                      | 4.4  | 91        |
| 14 | Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage.<br>Electrochimica Acta, 2020, 358, 136899.                                                                                           | 5.2  | 90        |
| 15 | Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage<br>electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.                    | 12.7 | 81        |
| 16 | Polymorphic crystals and their luminescence switching of triphenylacrylonitrile derivatives upon<br>solvent vapour, mechanical, and thermal stimuli. Journal of Materials Chemistry C, 2015, 3, 3049-3054.                       | 5.5  | 79        |
| 17 | A universal strategy to obtain highly redox-active porous carbons for efficient energy storage.<br>Journal of Materials Chemistry A, 2020, 8, 3717-3725.                                                                         | 10.3 | 79        |
| 18 | Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chinese<br>Chemical Letters, 2020, 31, 1226-1230.                                                                                          | 9.0  | 78        |

Yaokang Lv

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering<br>Journal, 2020, 388, 124208.                                                                                                  | 12.7 | 75        |
| 20 | Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical<br>Porous Carbon Nanosheets with an Efficient Capacitive Response. ACS Applied Materials &<br>Interfaces, 2022, 14, 33328-33339. | 8.0  | 73        |
| 21 | Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and<br>Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1,<br>4293-4303.                           | 5.1  | 72        |
| 22 | Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3061-3072.                                      | 5.9  | 69        |
| 23 | Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for<br>high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241.                                          | 4.0  | 68        |
| 24 | Boron "gluing―nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for<br>durable supercapacitive activity. Journal of Materials Chemistry A, 2021, 9, 2714-2724.                                        | 10.3 | 67        |
| 25 | Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon<br>Nanosheets for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4998-5007.                                                  | 5.0  | 63        |
| 26 | Fine Tuning Electronic Structure of Catalysts through Atomic Engineering for Enhanced Hydrogen<br>Evolution. Advanced Energy Materials, 2018, 8, 1800789.                                                                       | 19.5 | 59        |
| 27 | From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chinese Chemical Letters, 2019, 30, 1445-1449.                                                                    | 9.0  | 58        |
| 28 | Adapting a Kinetics-Enhanced Carbon Nanostructure to Li/Na Hybrid Water-in-Salt Electrolyte for<br>High-Energy Aqueous Supercapacitors. ACS Applied Energy Materials, 2021, 4, 5727-5737.                                       | 5.1  | 57        |
| 29 | Formation of Ti <sub>28</sub> Ln Cages, the Highest Nuclearity Polyoxotitanates (Ln=La, Ce). Chemistry<br>- A European Journal, 2012, 18, 11867-11870.                                                                          | 3.3  | 56        |
| 30 | Encapsulation of a â€~naked' Brâ^' anion in a polyoxotitanate host. Chemical Science, 2012, 3, 2470.                                                                                                                            | 7.4  | 52        |
| 31 | High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and "water-in-salt―<br>electrolyte. Chinese Chemical Letters, 2022, 33, 2681-2686.                                                                 | 9.0  | 50        |
| 32 | Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. Journal of Power Sources, 2022, 536, 231512.                                                                           | 7.8  | 47        |
| 33 | Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 579-582.                                                                             | 9.0  | 39        |
| 34 | Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage. Chinese Chemical Letters, 2021, 32, 3811-3816.                                                  | 9.0  | 38        |
| 35 | An integrated electrochromic supercapacitor based on nanostructured Er-containing titania using an Er( <scp>iii</scp> )-doped polyoxotitanate cage. Inorganic Chemistry Frontiers, 2016, 3, 1119-1123.                          | 6.0  | 36        |
| 36 | A study of the optical properties of metal-doped polyoxotitanium cages and the relationship to metal-doped titania. Dalton Transactions, 2014, 43, 8679.                                                                        | 3.3  | 33        |

YAOKANG LV

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chinese Chemical Letters, 2023, 34, 107304.        | 9.0  | 31        |
| 38 | A low-temperature single-source route to an efficient broad-band cerium(iii) photocatalyst using a<br>bimetallic polyoxotitanium cage. RSC Advances, 2013, 3, 13659.                             | 3.6  | 27        |
| 39 | Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diamond and Related Materials, 2021, 111, 108170.          | 3.9  | 26        |
| 40 | Emulsion-template synthesis of mesoporous nickel oxide nanoflowers composed of crossed nanosheets for effective nitrogen reduction. Dalton Transactions, 2021, 50, 5835-5844.                    | 3.3  | 24        |
| 41 | Novel Eu-containing titania composites derived from a new Eu( <scp>iii</scp> )-doped polyoxotitanate<br>cage. RSC Advances, 2016, 6, 57-60.                                                      | 3.6  | 21        |
| 42 | A novel ferrocene-containing aniline copolymer: its synthesis and electrochemical performance. RSC Advances, 2015, 5, 14053-14060.                                                               | 3.6  | 20        |
| 43 | Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode. New Journal of Chemistry, 2015, 39, 5329-5335. | 2.8  | 18        |
| 44 | Electrocatalytic ammonia synthesis catalyzed by mesoporous nickel oxide nanosheets loaded with Pt<br>nanoparticles. Chinese Journal of Catalysis, 2022, 43, 1371-1378.                           | 14.0 | 18        |
| 45 | Conjugated hybrid films based on a new polyoxotitanate monomer. Chemical Communications, 2018, 54, 14132-14135.                                                                                  | 4.1  | 14        |
| 46 | An Efficient Electrochromic Supercapacitor Based on Solutionâ€Processable Nanoporous<br>Poly{tris[4â€{3,4â€ethylenedioxythiophene)phenyl]amine}. ChemSusChem, 2020, 13, 3844-3854.               | 6.8  | 12        |
| 47 | Synthesis of Sodium-vanadate-doped Ordered Mesoporous Carbon Foams as Capacitor Electrode<br>Materials. Chemistry Letters, 2011, 40, 236-238.                                                    | 1.3  | 11        |
| 48 | From a polyoxotitanium cage to TiO <sub>2</sub> /C composites, a novel strategy for nanoporous materials. Journal of Materials Chemistry A, 2015, 3, 1837-1840.                                  | 10.3 | 10        |
| 49 | Surface modification by graphene oxide: An efficient strategy to improve the performance of activated carbon based supercapacitors. Chinese Chemical Letters, 2017, 28, 2285-2289.               | 9.0  | 10        |
| 50 | Recycling Ironâ€Containing Sludges from the Electroflocculation of Printing and Dyeing Wastewater<br>into Anode Materials for Lithiumâ€lon Batteries. ChemSusChem, 2020, 13, 3469-3478.          | 6.8  | 6         |
| 51 | Fluorinated Oleophilic Electrochromic Copolymer Based on 3â€(Nâ€Trifluoroacetamido)thiophene and<br>3,4â€Ethylenedioxythiophene (EDOT). ChemElectroChem, 2020, 7, 3038-3043.                     | 3.4  | 5         |
| 52 | Enhancement of photocurrent by incorporation of Preyssler type polyoxometalate protected nanoparticles in polyporphyrin films. Chemical Communications, 2021, 57, 1482-1485.                     | 4.1  | 4         |
| 53 | Crystal structure of dibromidotetrakis(propan-2-ol-κO)nickel(II). Acta Crystallographica Section E:<br>Crystallographic Communications, 2015, 71, m263-m264.                                     | 0.5  | 0         |