Yongjian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431547/publications.pdf

Version: 2024-02-01

37	913	15	29
papers	citations	h-index	g-index
37	37 docs citations	37	1628
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Experimental Neurology, 2022, 352, 114026.	4.1	11
2	Plin5 inhibits proliferation and migration of vascular smooth muscle cell through interacting with PGC-1α following vascular injury. Bioengineered, 2022, 13, 10665-10678.	3.2	7
3	Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/ \hat{l}^2 -catenin axis BMB Reports, 2022, , .	2.4	O
4	Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1 \hat{l}^2 -catenin axis. BMB Reports, 2022, 55, 244-249.	2.4	2
5	Melatonin alleviates angiotensin-Il-induced cardiac hypertrophy via activating MICU1 pathway. Aging, 2021, 13, 493-515.	3.1	17
6	Dietary Menthol Attenuates Inflammation and Cardiac Remodeling After Myocardial Infarction via the Transient Receptor Potential Melastatin 8. American Journal of Hypertension, 2020, 33, 223-233.	2.0	11
7	Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties. Hypertension Research, 2020, 43, 1047-1056.	2.7	11
8	Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Frontiers in Aging Neuroscience, 2020, 12, 584743.	3.4	37
9	Cinnamaldehyde Ameliorates Vascular Dysfunction in Diabetic Mice by Activating Nrf2. American Journal of Hypertension, 2020, 33, 610-619.	2.0	29
10	TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis, 2020, 301, 44-53.	0.8	38
11	NF2 deficiency accelerates neointima hyperplasia following vascular injury via promoting YAP-TEAD1 interaction in vascular smooth muscle cells. Aging, 2020, 12, 9726-9744.	3.1	13
12	TRPA1 Promotes Cardiac Myofibroblast Transdifferentiation after Myocardial Infarction Injury via the Calcineurin-NFAT-DYRK1A Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	23
13	Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clinical Science, 2019, 133, 1097-1113.	4.3	11
14	Plin5/p-Plin5 Guards Diabetic CMECs by Regulating FFAs Metabolism Bidirectionally. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	9
15	UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction. Cellular Physiology and Biochemistry, 2018, 46, 1683-1692.	1.6	13
16	Predictors and Management of Antiplatelet-Related Bleeding Complications for Acute Coronary Syndrome in Chinese Elderly Patients. Cellular Physiology and Biochemistry, 2018, 50, 1164-1177.	1.6	3
17	Overexpression of SARAF Ameliorates Pressure Overload–Induced Cardiac Hypertrophy Through Suppressing STIM1-Orai1 in Mice. Cellular Physiology and Biochemistry, 2018, 47, 817-826.	1.6	21
18	Activation of transient receptor potential vanilloid 1Âaccelerates re-endothelialization and inhibits neointimal formation after vascular injury. Journal of Vascular Surgery, 2017, 65, 197-205.e2.	1.1	7

#	Article	IF	CITATIONS
19	Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury. Journal of the American Heart Association, 2017, 6, .	3.7	13
20	Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Science Translational Medicine, 2017, 9, .	12.4	139
21	Does growth differentiation factor 11 protect against myocardial ischaemia/reperfusion injury? A hypothesis. Journal of International Medical Research, 2017, 45, 1629-1635.	1.0	5
22	Perivascular radiofrequency renal denervation lowers blood pressure and ameliorates cardiorenal fibrosis in spontaneously hypertensive rats. PLoS ONE, 2017, 12, e0176888.	2.5	5
23	UCP-2 is involved in angiotensin-Il-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. PLoS ONE, 2017, 12, e0179743.	2.5	7
24	The Role of Mitochondrial Functional Proteins in ROS Production in Ischemic Heart Diseases. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-8.	4.0	43
25	Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radical Biology and Medicine, 2016, 97, 408-417.	2.9	68
26	Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice. International Journal of Molecular Medicine, 2016, 38, 601-609.	4.0	13
27	The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF- \hat{l}^21 pathway. Scientific Reports, 2016, 6, 29975.	3.3	14
28	Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Scientific Reports, 2016, 6, 28773.	3.3	46
29	A Novel Swine Model of Spontaneous Hypertension With Sympathetic Hyperactivity Responds Well to Renal Denervation. American Journal of Hypertension, 2016, 29, 63-72.	2.0	24
30	Over-Expression of Calpastatin Inhibits Calpain Activation and Attenuates Post-Infarction Myocardial Remodeling. PLoS ONE, 2015, 10, e0120178.	2.5	20
31	TNF- $\hat{l}\pm$ inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radical Biology and Medicine, 2015, 82, 114-121.	2.9	64
32	Apolipoprotein E-deficient rats develop atherosclerotic plaques in partially ligated carotid arteries. Atherosclerosis, 2015, 243, 589-592.	0.8	49
33	Systematic review/Meta-analysis The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Archives of Medical Science, 2014, 5, 855-862.	0.9	68
34	Dietary Capsaicin Ameliorates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis Through the Transient Receptor Potential Vanilloid Type 1. American Journal of Hypertension, 2014, 27, 1521-1529.	2.0	42
35	Ablation of uncoupling protein 2 exacerbates salt-induced cardiovascular and renal remodeling associated with enhanced oxidative stress. International Journal of Cardiology, 2014, 175, 206-210.	1.7	13
36	Expression of mammalian target of rapamycin in atherosclerotic plaques is decreased under diabetic conditions: A mechanism for rapamycin resistance. Molecular Medicine Reports, 2014, 9, 2388-2392.	2.4	6

#	Article	IF	CITATIONS
37	Intermittent cold stress enhances features of atherosclerotic plaque instability in apolipoprotein E-deficient mice. Molecular Medicine Reports, 2014, 10, 1679-1684.	2.4	11