Yaqi Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431217/publications.pdf

Version: 2024-02-01

623734 552781 41 705 14 26 citations h-index g-index papers 56 56 56 529 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Advances in Space Research, 2023, 72, 5490-5502.	2.6	3
2	Method for Forecasting Ionospheric Electron Content Fluctuations Based on the Optical Flow Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-21.	6.3	3
3	Dayside Scintillations of GPS Signals According to the Observations on the Svalbard Archipelago. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, 348-353.	0.6	3
4	Ionospheric Plasma IRregularities ―lPIR ―Data Product Based on Data From the Swarm Satellites. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	17
5	Interhemispheric variability of the electron density and derived parameters by the Swarm satellites during different solar activity – Erratum. Journal of Space Weather and Space Climate, 2022, 12, 15.	3.3	O
6	Climatology and modeling of ionospheric irregularities over Greenland based on empirical orthogonal function method. Journal of Space Weather and Space Climate, 2022, 12, 23.	3.3	4
7	Interferometric Study of Ionospheric Plasma Irregularities in Regions of Phase Scintillations and HF Backscatter. Geophysical Research Letters, 2022, 49, .	4.0	8
8	A Small Peak in the Swarm‣P Plasma Density Data at the Dayside Dip Equator. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
9	The Lifetimes of Plasma Structures at High Latitudes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028117.	2.4	6
10	lonospheric Plasma Fluctuations Induced by the NWC Very Low Frequency Signal Transmitter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029213.	2.4	3
11	Influence of different types of ionospheric disturbances on GPS signals at polar latitudes. Annales Geophysicae, 2021, 39, 687-700.	1.6	8
12	Steepening Plasma Density Spectra in the Ionosphere: The Crucial Role Played by a Strong Eâ€Region. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029401.	2.4	9
13	Statistical Distribution of Decameter Scale (50Âm) Ionospheric Irregularities at High Latitudes. Geophysical Research Letters, 2021, 48, e2021GL094794.	4.0	1
14	lonospheric Plasma Irregularities Based on In Situ Measurements From the Swarm Satellites. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028103.	2.4	36
15	On the Production of Ionospheric Irregularities Via Kelvinâ€Helmholtz Instability Associated with Cusp FlowÂChannels. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027734.	2.4	16
16	Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere. Scientific Reports, 2020, 10, 6363.	3.3	10
17	Interhemispheric Asymmetry of Largeâ€Scale Electron Density Gradients in the Polar Cap Ionosphere: UT and Seasonal Variations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027601.	2.4	16
18	Influence of Different Ionospheric Disturbances on the GPS Scintillations at High Latitudes. Springer Proceedings in Earth and Environmental Sciences, 2020, , 281-287.	0.4	3

#	Article	IF	Citations
19	Observational Evidence for the Role of Hall Conductance in Alfv \tilde{A} ©n Wave Reflection. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028119.	2.4	9
20	Influence of the Ionosphere on the Parameters of the GPS Navigation Signals during a Geomagnetic Substorm. Geomagnetism and Aeronomy, 2020, 60, 754-767.	0.8	5
21	Ionospheric Irregularities in the Cusp Ionosphere: In situ Observations by NorSat-1 Satellite. , 2020, , .		1
22	Simultaneous Rocket and Scintillation Observations of Plasma Irregularities Associated With a Reversed Flow Event in the Cusp Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 7098-7111.	2.4	11
23	Plasma patches inside the polar cap and auroral oval: the impact on the spaceborne GPS receiver. Journal of Space Weather and Space Climate, 2019, 9, A25.	3.3	12
24	Observational Evidence for Throat Aurora Being Associated With Magnetopause Reconnection. Geophysical Research Letters, 2019, 46, 7113-7120.	4.0	15
25	Multineedle Langmuir Probe Operation and Acute Probe Current Susceptibility to Spacecraft Potential. IEEE Transactions on Plasma Science, 2019, 47, 3816-3823.	1.3	4
26	Direct Evidence for the Dissipation of Smallâ€Scale Ionospheric Plasma Structures by a Conductive <i>E</i> Region. Journal of Geophysical Research: Space Physics, 2019, 124, 2935-2942.	2.4	18
27	Polar Cap Patch Prediction in the Expanding Contracting Polar Cap Paradigm. Space Weather, 2019, 17, 1570-1583.	3.7	1
28	Ionospheric Plasma Irregularities Characterized by the Swarm Satellites: Statistics at High Latitudes. Journal of Geophysical Research: Space Physics, 2019, 124, 1262-1282.	2.4	62
29	Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data. Physics of Plasmas, 2018, 25, .	1.9	6
30	Ionospheric plasma irregularities studied with Swarm satellites. E3S Web of Conferences, 2018, 62, 01009.	0.5	1
31	Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. Journal of Space Weather and Space Climate, 2018, 8, A48.	3.3	24
32	GPS Scintillations and Losses of Signal Lock at High Latitudes During the 2015 St. Patrick's Day Storm. Journal of Geophysical Research: Space Physics, 2018, 123, 7943-7957.	2.4	24
33	Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3837-3851.	2.4	59
34	GPS scintillations associated with cusp dynamics and polar cap patches. Journal of Space Weather and Space Climate, 2017, 7, A23.	3.3	46
35	Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. Journal of Geophysical Research: Space Physics, 2016, 121, 4679-4697.	2.4	46
36	The auroral ionosphere TEC response to an interplanetary shock. Geophysical Research Letters, 2016, 43, 1810-1818.	4.0	14

Yaqı Jin

#	Article	IF	CITATION
37	On the collocation of the cusp aurora and the GPS phase scintillation: A statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 9176-9191.	2.4	70
38	Interplanetary magnetic field and solar cycle dependence of Northern Hemisphere <i>F</i> region joule heating. Journal of Geophysical Research: Space Physics, 2015, 120, 1478-1487.	2.4	9
39	The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Science China Technological Sciences, 2014, 57, 67-79.	4.0	27
40	GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. Journal of Space Weather and Space Climate, 2014, 4, A23.	3.3	87
41	Interhemispheric variability of the electron density and derived parameters by the Swarm satellites during different solar activity. Journal of Space Weather and Space Climate, 0, , .	3.3	2