Taku Nagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/24310/publications.pdf

Version: 2024-02-01

129	6,939	43	78
papers	citations	h-index	g-index
138	138 docs citations	138	9109
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 2007, 446, 41-45.	13.7	614
2	Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB Journal, 2003, 17, 50-52.	0.2	270
3	RAGE-mediated signaling contributes to intraneuronal transport of amyloid- \hat{l}^2 and neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20021-20026.	3.3	251
4	Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behavioural Brain Research, 2009, 202, 114-121.	1,2	214
5	Social isolation rearingâ€induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotionâ€related behaviors in juvenile mice. Journal of Neurochemistry, 2008, 105, 921-932.	2.1	213
6	Silibinin prevents amyloid β peptideâ€induced memory impairment and oxidative stress in mice. British Journal of Pharmacology, 2009, 157, 1270-1277.	2.7	169
7	Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase $1/2$ in the prefrontal cortex. Learning and Memory, 2007, 14, 117-125.	0.5	166
8	Role of Tumor Necrosis Factor-Â in Methamphetamine-Induced Drug Dependence and Neurotoxicity. Journal of Neuroscience, 2004, 24, 2212-2225.	1.7	158
9	Repeated Methamphetamine Treatment Impairs Recognition Memory Through a Failure of Novelty-Induced ERK1/2 Activation in the Prefrontal Cortex of Mice. Biological Psychiatry, 2006, 59, 75-84.	0.7	149
10	Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid- \hat{l}^2 peptide in mice. Behavioural Brain Research, 2011, 225, 222-229.	1.2	131
11	FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization. Nature Communications, 2015, 6, 7098.	5.8	129
12	Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Human Molecular Genetics, 2011, 20, 4666-4683.	1.4	128
13	Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology, 2009, 202, 315-328.	1.5	127
14	Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behavioural Brain Research, 2010, 206, 32-37.	1.2	126
15	Neonatal polyl:C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neuroscience Research, 2009, 64, 297-305.	1.0	124
16	Chronic restraint stress impairs neurogenesis and hippocampusâ€dependent fear memory in mice: possible involvement of a brainâ€specific transcription factor Npas4. Journal of Neurochemistry, 2010, 114, 1840-1851.	2.1	121
17	Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. NeuroReport, 2001, 12, 11-15.	0.6	120
18	Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer's disease (3XTg-AD). Behavioural Brain Research, 2015, 289, 69-77.	1.2	111

#	Article	IF	CITATIONS
19	Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis. Cell Reports, 2014, 9, 2166-2179.	2.9	109
20	Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16066-16071.	3.3	105
21	From The Cover: The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3650-3655.	3.3	104
22	Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behavioural Brain Research, 2013, 250, 351-360.	1.2	94
23	Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal InÂVivo. Neuron, 2016, 89, 550-565.	3.8	81
24	Immunocytochemical evidence that amyloid \hat{l}^2 ($1\hat{a}\in 42$) impairs endogenous antioxidant systems in vivo. Neuroscience, 2003, 119, 399-419.	1.1	79
25	Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behavioural Brain Research, 2010, 207, 387-393.	1.2	79
26	Girdin Phosphorylation Is Crucial for Synaptic Plasticity and Memory: A Potential Role in the Interaction of BDNF/TrkB/Akt Signaling with NMDA Receptor. Journal of Neuroscience, 2014, 34, 14995-15008.	1.7	79
27	$17\hat{l}^2$ -estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience, 2007, 146, 60-68.	1.1	77
28	Involvement of Pallidotegmental Neurons in Methamphetamine- and MK-801-Induced Impairment of Prepulse Inhibition of the Acoustic Startle Reflex in Mice: Reversal by GABAB Receptor Agonist Baclofen. Neuropsychopharmacology, 2008, 33, 3164-3175.	2.8	75
29	A Novel Molecule "Shati―ls Involved in Methamphetamine-Induced Hyperlocomotion, Sensitization, and Conditioned Place Preference. Journal of Neuroscience, 2007, 27, 7604-7615.	1.7	72
30	Effects of memantine and donepezil on amyloid \hat{l}^2 -induced memory impairment in a delayed-matching to position task in rats. Behavioural Brain Research, 2005, 162, 191-199.	1.2	71
31	Silibinin Attenuates Amyloid β _{25–35} Peptide-Induced Memory Impairments: Implication of Inducible Nitric-Oxide Synthase and Tumor Necrosis Factor-α in Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 319-326.	1.3	71
32	Clozapine Prevents a Decrease in Neurogenesis in Mice Repeatedly Treated With Phencyclidine. Journal of Pharmacological Sciences, 2007, 103, 299-308.	1,1	69
33	Behavioural adaptations to addictive drugs in mice lacking the NMDA receptor epsilon1 subunit. European Journal of Neuroscience, 2004, 19, 151-158.	1.2	63
34	Repeated methamphetamine treatment impairs spatial working memory in rats: reversal by clozapine but not haloperidol. Psychopharmacology, 2007, 194, 21-32.	1.5	62
35	Neural Circuits Containing Pallidotegmental GABAergic Neurons are Involved in the Prepulse Inhibition of the Startle Reflex in Mice. Biological Psychiatry, 2007, 62, 148-157.	0.7	61
36	A neuroactive steroid, dehydroepiandrosterone sulfate, prevents the development of morphine dependence and tolerance via c-fos expression linked to the extracellular signal-regulated protein kinase. Behavioural Brain Research, 2004, 152, 243-250.	1.2	60

#	Article	IF	CITATIONS
37	The Rewards of Nicotine: Regulation by Tissue Plasminogen Activator-Plasmin System through Protease Activated Receptor-1. Journal of Neuroscience, 2006, 26, 12374-12383.	1.7	60
38	The role of tissue plasminogen activator in methamphetamine-related reward and sensitization. Journal of Neurochemistry, 2005, 92, 660-667.	2.1	54
39	Enduring vulnerability to reinstatement of methamphetamineâ€seeking behavior in glial cell lineâ€derived neurotrophic factor mutant mice. FASEB Journal, 2007, 21, 1994-2004.	0.2	53
40	Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia, 2013, 61, 679-693.	2.5	53
41	Phencyclidine Impairs Latent Learning in Mice Interaction between Glutamatergic Systems and Sigma1 Receptors. Neuropsychopharmacology, 2001, 24, 451-460.	2.8	51
42	Neurosteroids Ameliorate Conditioned Fear Stress An Association with Sigma1 Receptors. Neuropsychopharmacology, 2000, 23, 276-284.	2.8	48
43	GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice. European Journal of Pharmacology, 2009, 602, 101-104.	1.7	44
44	Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends in Pharmacological Sciences, 2016, 37, 858-871.	4.0	44
45	Drug Dependence, Synaptic Plasticity, and Tissue Plasminogen Activator. Journal of Pharmacological Sciences, 2005, 97, 157-161.	1.1	43
46	A Novel Azaindolizinone Derivative ZSET1446 (Spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) Improves Methamphetamine-Induced Impairment of Recognition Memory in Mice by Activating Extracellular Signal-Regulated Kinase 1/2. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 819-827.	1.3	43
47	Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor. International Journal of Neuropsychopharmacology, 2014, 17, 723-737.	1.0	43
48	Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Reports, 2014, 8, 843-857.	2.9	43
49	Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyl:C treatment. Behavioural Brain Research, 2011, 225, 305-310.	1.2	42
50	ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk. Translational Psychiatry, 2020, 10, 247.	2.4	42
51	Morphine tolerance and dependence in the nociceptin receptor knockout mice. Journal of Neural Transmission, 2001, 108, 1349-1361.	1.4	41
52	Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex. Neuropsychopharmacology, 2012, 37, 1387-1396.	2.8	41
53	Insular neural system controls decision-making in healthy and methamphetamine-treated rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3930-9.	3.3	40
54	Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia, 2018, 66, 1034-1052.	2.5	39

#	Article	IF	CITATIONS
55	Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: An in vivo microdialysis study. Neuroscience Letters, 2010, 470, 134-138.	1.0	38
56	Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex. Neuropsychopharmacology, 2016, 41, 578-589.	2.8	38
57	Genetic and animal model analyses reveal the pathogenic role of a novel deletion of RELN in schizophrenia. Scientific Reports, 2018, 8, 13046.	1.6	38
58	AUTS2 Regulation of Synapses for Proper Synaptic Inputs and Social Communication. IScience, 2020, 23, 101183.	1.9	38
59	Alterations of GABAergic and dopaminergic systems in mutant mice with disruption of exons 2 and 3 of the Disc1 gene. Neurochemistry International, 2014, 74, 74-83.	1.9	37
60	Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Reports, 2019, 29, 3235-3252.e9.	2.9	37
61	Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience, 2007, 149, 256-262.	1.1	36
62	Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine-treated mice. International Journal of Neuropsychopharmacology, 2012, 15, 1489-1501.	1.0	36
63	Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory. PLoS ONE, 2015, 10, e0145979.	1.1	36
64	Enhanced antidepressant efficacy of $large large larg$	1.7	34
65	The long-lasting effects of cross-fostering on the emotional behavior in ICR mice. Behavioural Brain Research, 2009, 198, 172-178.	1.2	33
66	Neuronal Per Arnt Sim (PAS) Domain Protein 4 (NPAS4) Regulates Neurite Outgrowth and Phosphorylation of Synapsin I. Journal of Biological Chemistry, 2013, 288, 2655-2664.	1.6	33
67	Animal Model for Schizophrenia That Reflects Gene-Environment Interactions. Biological and Pharmaceutical Bulletin, 2011, 34, 1364-1368.	0.6	32
68	Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochemistry International, 2019, 122, 8-18.	1.9	32
69	Transcriptional suppression of the neuronal <scp>PAS</scp> domain 4 (Npas4) gene by stress via the binding of agonistâ€bound glucocorticoid receptor to its promoter. Journal of Neurochemistry, 2012, 123, 866-875.	2.1	30
70	Reelin has a preventive effect on phencyclidine-induced cognitive and sensory-motor gating deficits. Neuroscience Research, 2015, 96, 30-36.	1.0	30
71	Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Translational Psychiatry, 2020, 10, 35.	2.4	30
72	Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules. Neurobiology of Disease, 2013, 53, 61-74.	2.1	29

#	Article	IF	CITATIONS
73	Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia–reperfusion. Free Radical Biology and Medicine, 2014, 69, 324-330.	1.3	29
74	Alteration of gene expression and DNA methylation in drug-resistant gastric cancer. Oncology Reports, 2014, 31, 1883-1890.	1.2	29
75	Modification by the tissue plasminogen activator-plasmin system of morphine-induced dopamine release and hyperlocomotion, but not anti-nociceptive effect in mice. Journal of Neurochemistry, 2005, 93, 1272-1279.	2.1	25
76	The Extensive Nitration of Neurofilament Light Chain in the Hippocampus Is Associated with the Cognitive Impairment Induced by Amyloid \hat{l}^2 in Mice. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 137-147.	1.3	24
77	Reelin Supplementation Into the Hippocampus Rescues Abnormal Behavior in a Mouse Model of Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 285.	1.8	24
78	Neuronal <scp>PAS</scp> domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazoleâ€induced epilepsy through the induction of Homer1a. Journal of Neurochemistry, 2018, 145, 19-33.	2.1	23
79	Involvement of Tissue Plasminogen Activator-Plasmin System in Depolarization-Evoked Dopamine Release in the Nucleus Accumbens of Mice. Molecular Pharmacology, 2006, 70, 1720-1725.	1.0	22
80	Synergistic Effects of Adenosine A2A Antagonist and L-DOPA on Rotational Behaviors in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Mouse Model. Journal of Pharmacological Sciences, 2007, 103, 329-332.	1.1	22
81	Possible involvement of protease-activated receptor-1 in the regulation of morphine-induced dopamine release and hyperlocomotion by the tissue plasminogen activator-plasmin system. Journal of Neurochemistry, 2007, 101, 1392-1399.	2.1	22
82	Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS. Reviews in the Neurosciences, 2016, 27, 481-490.	1.4	21
83	Association of impaired neuronal migration with cognitive deficits in extremely preterm infants. JCI Insight, 2017, 2, .	2.3	21
84	Enhancement of immobility induced by repeated phencyclidine injection: association with c-Fos protein in the mouse brain. Behavioural Brain Research, 2001, 124, 71-76.	1.2	20
85	Involvement of hippocampal extracellular signal-regulated kinase 1/2 in spatial working memory in rats. NeuroReport, 2006, 17, 1453-1457.	0.6	20
86	Nicotine ameliorates impairment of working memory in methamphetamine-treated rats. Behavioural Brain Research, 2011, 220, 159-163.	1.2	20
87	Placental Extract Improves Hippocampal Neuronal Loss and Fear Memory Impairment Resulting From Chronic Restraint Stress in Ovariectomized Mice. Journal of Pharmacological Sciences, 2012, 120, 89-97.	1.1	19
88	Acid load during total parenteral nutrition: comparison of hydrochloric acid and acetic acid on plasma acid-base balance. Nutrition, 2000, 16, 260-263.	1.1	18
89	Reinforcing effects of morphine are reduced in tissue plasminogen activator-knockout mice. Neuroscience, 2007, 146, 50-59.	1.1	18
90	Deletion of SHATI/NAT8L increases dopamine D1 receptor on the cell surface in the nucleus accumbens, accelerating methamphetamine dependence. International Journal of Neuropsychopharmacology, 2014, 17, 443-453.	1.0	18

#	Article	IF	CITATIONS
91	Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Scientific Reports, 2018, 8, 9221.	1.6	18
92	Role of tissue plasminogen activator in the sensitization of methamphetamine-induced dopamine release in the nucleus accumbens. Journal of Neurochemistry, 2008, 105, 436-444.	2.1	16
93	D-Serine Ameliorates Neonatal Polyl:C Treatment^ ^ndash;Induced Emotional and Cognitive Impairments in Adult Mice. Journal of Pharmacological Sciences, 2012, 120, 213-227.	1.1	16
94	Matrix metalloproteinase-3 is a possible mediator of neurodevelopmental impairment due to polyl:C-induced innate immune activation of astrocytes. Brain, Behavior, and Immunity, 2014, 38, 272-282.	2.0	16
95	Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice. International Journal of Neuropsychopharmacology, 2010, 13, 877-889.	1.0	15
96	Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice. Neuroscience, 2012, 207, 261-273.	1.1	15
97	Plasma dehydroepiandrosterone sulfate levels in patients with major depressive disorder correlate with remission during treatment with antidepressants. Human Psychopharmacology, 2014, 29, 280-286.	0.7	15
98	Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochemistry International, 2021, 143, 104935.	1.9	14
99	Activation of postâ€synaptic dopamine D ₁ receptors promotes the release of tissue plasminogen activator in the nucleus accumbens via PKA signaling. Journal of Neurochemistry, 2007, 103, 2589-2596.	2.1	13
100	Stress increases DNA methylation of the neuronal PAS domain 4 (Npas4) gene. NeuroReport, 2015, 26, 827-832.	0.6	13
101	Generation and analysis of novel <i>Relnâ€</i> deleted mouse model corresponding to exonic <i>Reln</i> deletion in schizophrenia. Psychiatry and Clinical Neurosciences, 2020, 74, 318-327.	1.0	13
102	Shati/Nat8l deficiency disrupts adult neurogenesis and causes attentional impairment through dopaminergic neuronal dysfunction in the dentate gyrus. Journal of Neurochemistry, 2021, 157, 642-655.	2.1	13
103	Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacological Research, 2021, 173, 105832.	3.1	12
104	SHATI/NAT8L regulates neurite outgrowth via microtubule stabilization. Journal of Neuroscience Research, 2013, 91, 1525-1532.	1.3	11
105	Basic and Translational Research on Proteinase-Activated Receptors: Regulation of Nicotine Reward by the Tissue Plasminogen Activator (tPA) – Plasmin System via Proteinase-Activated Receptor 1. Journal of Pharmacological Sciences, 2008, 108, 408-414.	1.1	10
106	The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients. Neurochemistry International, 2010, 56, 736-739.	1.9	10
107	Induction of interferon-induced transmembrane protein 3 gene expression by lipopolysaccharide in astrocytes. European Journal of Pharmacology, 2014, 745, 166-175.	1.7	10
108	Mice carrying a schizophrenia-associated mutation of the Arhgap10 gene are vulnerable to the effects of methamphetamine treatment on cognitive function: association with morphological abnormalities in striatal neurons. Molecular Brain, 2021, 14, 21.	1.3	10

#	Article	IF	CITATIONS
109	Analysis of Reelin signaling and neurodevelopmental trajectory in primary cultured cortical neurons with RELN deletion identified in schizophrenia. Neurochemistry International, 2021, 144, 104954.	1.9	9
110	Glucocorticoid receptor signaling in ventral tegmental area neurons increases the rewarding value of a high-fat diet in mice. Scientific Reports, 2021, 11, 12873.	1.6	9
111	Effects of sub-acute and sub-chronic inhalation of 1-bromopropane on neurogenesis in adult rats. Toxicology, 2013, 304, 76-82.	2.0	8
112	Innate immune activation of astrocytes impairs neurodevelopment via upregulation of follistatin-like 1 and interferon-induced transmembrane protein 3. Journal of Neuroinflammation, 2018, 15, 295.	3.1	8
113	Proteomic analysis of lymphoblastoid cell lines from schizophrenic patients. Translational Psychiatry, 2019, 9, 126.	2.4	8
114	Dynamic subcellular localization and transcription activity of the SRF cofactor MKL2 in the striatum are regulated by MAPK. Journal of Neurochemistry, 2021, 157, 1774-1788.	2.1	8
115	KANPHOS: A Database of Kinase-Associated Neural Protein Phosphorylation in the Brain. Cells, 2022, 11, 47.	1.8	8
116	Incidence of and risk factors associated with nedaplatin-related hypersensitivity reactions. International Journal of Clinical Oncology, 2017, 22, 593-599.	1.0	7
117	Cell type-specific activation of mitogen-activated protein kinase in D1 receptor-expressing neurons of the nucleus accumbens potentiates stimulus-reward learning in mice. Scientific Reports, 2018, 8, 14413.	1.6	7
118	Overexpression of astroglial major histocompatibility complex class I in the medial prefrontal cortex impairs visual discrimination learning in mice. Molecular Brain, 2020, 13, 170.	1.3	7
119	Muscarinic signaling regulates voltageâ€gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. Journal of Neurochemistry, 2022, 160, 325-341.	2.1	7
120	Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-Î ² -PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 2022, 27, 3479-3492.	4.1	7
121	Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice. Neuroscience, 2017, 351, 15-23.	1.1	6
122	Pharmacological and proteomic analyses of neonatal polyl:C-treated adult mice. Neuroscience Research, 2019, 147, 39-47.	1.0	6
123	Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset. Journal of Neurophysiology, 2015, 114, 1974-1986.	0.9	5
124	Isoflurane Induces Transient Impairment of Retention of Spatial Working Memory in Rats. Acta Medica Okayama, 2016, 70, 455-460.	0.1	5
125	Involvement of dopaminergic system in the nucleus accumbens in the discriminative stimulus effects of phencyclidine. Neuropharmacology, 2002, 42, 764-771.	2.0	3
126	Methylation analysis for postpartum depression: a case control study. BMC Psychiatry, 2019, 19, 190.	1.1	3

Taku Nagai

#	Article	IF	CITATIONS
127	Mice with exonic RELN deletion identified from a patient with schizophrenia have impaired visual discrimination learning and reversal learning in touchscreen operant tasks. Behavioural Brain Research, 2022, 416, 113569.	1.2	3
128	Valosin-containing protein (VCP) is a novel IQ motif-containing GTPase activating protein 1 (IQGAP1)-interacting protein. Biochemical and Biophysical Research Communications, 2017, 493, 1384-1389.	1.0	2
129	The physiology and pathophysiology of basal ganglia: From signal transduction to circuits. Neurochemistry International, 2019, 131, 104544.	1.9	1