Fay-Wei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2430755/publications.pdf

Version: 2024-02-01

		26610	2	28275	
300	15,070	56		105	
papers	citations	h-index		g-index	
			. '		
311	311	311		13505	
311	311	311		13303	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	One thousand plant transcriptomes and theÂphylogenomics of green plants. Nature, 2019, 574, 679-685.	13.7	1,162
2	A communityâ€derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 2016, 54, 563-603.	1.6	1,040
3	Invariant scaling relations across tree-dominated communities. Nature, 2001, 410, 655-660.	13.7	566
4	The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 2011, 38, 535.	1.1	421
5	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	2.8	406
6	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
7	Patterns in vascular land plant diversification. Nature, 1983, 303, 614-616.	13.7	291
8	Plant allometry: is there a grand unifying theory?. Biological Reviews, 2004, 79, 871-889.	4.7	280
9	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	4.7	225
10	Super-resolution ribosome profiling reveals unannotated translation events in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7126-E7135.	3.3	222
11	Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 2003, 6, 990-995.	3.0	215
12	Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8, 636-642.	3.0	215
13	From The Cover: Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15661-15663.	3.3	211
14	On the Vegetative Biomass Partitioning of Seed Plant Leaves, Stems, and Roots. American Naturalist, 2002, 159, 482-497.	1.0	185
15	"Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.	3.3	177
16	10KP: A phylodiverse genome sequencing plan. GigaScience, 2018, 7, 1-9.	3.3	169
17	The evolutionary history of ferns inferred from 25 lowâ€copy nuclear genes. American Journal of Botany, 2015, 102, 1089-1107.	0.8	157
18	Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates. Annals of Botany, 2006, 97, 155-163.	1.4	154

#	Article	IF	CITATIONS
19	The evolution of the land plant life cycle. New Phytologist, 2010, 185, 27-41.	3.5	153
20	The origins of multicellular organisms. Evolution & Development, 2013, 15, 41-52.	1.1	151
21	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	4.7	150
22	Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6672-6677.	3.3	146
23	Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nature Communications, 2015, 6, 7852.	5.8	139
24	Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 2010, 97, 1587-1594.	0.8	134
25	Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 2002, 89, 812-819.	0.8	131
26	First insights into fern matK phylogeny. Molecular Phylogenetics and Evolution, 2011, 59, 556-566.	1.2	127
27	Modelling Below- and Above-ground Biomass for Non-woody and Woody Plants. Annals of Botany, 2005, 95, 315-321.	1.4	123
28	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 2018, 5, 728-739.	4.6	121
29	Tree size frequency distributions, plant density, age and community disturbance. Ecology Letters, 2003, 6, 405-411.	3.0	112
30	The evolutionaryâ€developmental origins of multicellularity. American Journal of Botany, 2014, 101, 6-25.	0.8	110
31	Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE (ANR), a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell, 2016, 28, tpc.00091.2016.	3.1	98
32	Maximum plant height and the biophysical factors that limit it. Tree Physiology, 2007, 27, 433-440.	1.4	96
33	Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Frontiers in Cell and Developmental Biology, 2015, 3, 8.	1.8	96
34	Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology, 1984, 10, 79-101.	1.3	94
35	A phyletic perspective on the allometry of plant biomassâ€partitioning patterns and functionally equivalent organâ€categories. New Phytologist, 2006, 171, 27-40.	3.5	94
36	An Exploration into Fern Genome Space. Genome Biology and Evolution, 2015, 7, 2533-2544.	1.1	85

#	Article	IF	CITATIONS
37	THE ROLE OF PHYLLOTACTIC PATTERN AS A "DEVELOPMENTAL CONSTRAINT―ON THE INTERCEPTION OF LICE BY LEAF SURFACES. Evolution; International Journal of Organic Evolution, 1988, 42, 1-16.	SHT.	84
38	N, P, and C stoichiometry of <i>Eranthis hyemalis </i> (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 2005, 92, 1256-1263.	0.8	84
39	P <scp>redicting the height of fossil plant remains: an allometric approach to an old problem</scp> . American Journal of Botany, 1994, 81, 1235-1242.	0.8	83
40	The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. Journal of Experimental Botany, 2017, 68, 5261-5269.	2.4	83
41	The mechanical role of bark. American Journal of Botany, 1999, 86, 465-469.	0.8	82
42	rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns. PLoS ONE, 2011, 6, e26597.	1.1	80
43	Nextâ€generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio singleâ€molecule sequencing. New Phytologist, 2017, 213, 413-429.	3.5	77
44	The hornworts: morphology, evolution and development. New Phytologist, 2021, 229, 735-754.	3.5	72
45	COMPUTER MODELS OF EARLY LAND PLANT EVOLUTION. Annual Review of Earth and Planetary Sciences, 2004, 32, 47-66.	4.6	70
46	Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12328-12333.	3.3	70
47	The role of the epidermis as a stiffening agent in Tulipa (Liliaceae) stems. American Journal of Botany, 1997, 84, 735-744.	0.8	69
48	Global warming reduces plant reproductive output for temperate multiâ€inflorescence species on the Tibetan plateau. New Phytologist, 2012, 195, 427-436.	3.5	69
49	Transcriptome-Mining for Single-Copy Nuclear Markers in Ferns. PLoS ONE, 2013, 8, e76957.	1.1	69
50	Between Two Fern Genomes. GigaScience, 2014, 3, 15.	3.3	69
51	The origin and evolution of phototropins. Frontiers in Plant Science, 2015, 6, 637.	1.7	68
52	Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content. Genome Biology and Evolution, 2016, 8, 2452-2458.	1.1	66
53	A guide to sequence your favorite plant genomes. Applications in Plant Sciences, 2018, 6, e1030.	0.8	66
54	< >Gaga< >, a New Fern Genus Segregated from < >Cheilanthes< > (Pteridaceae). Systematic Botany, 2012, 37, 845-860.	0.2	62

#	Article	IF	Citations
55	FLEXURAL STIFFNESS AND MODULUS OF ELASTICITY OF FLOWER STALKS FROM ALLIUM SATIVUM AS MEASURED BY MULTIPLE RESONANCE FREQUENCY SPECTRA. American Journal of Botany, 1988, 75, 1517-1525.	0.8	61
56	The evolutionary development of plant body plans. Functional Plant Biology, 2009, 36, 682.	1.1	61
57	Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 2015, 116, 899-906.	1.4	61
58	On the evolutionary significance of horizontal gene transfers in plants. New Phytologist, 2020, 225, 113-117.	3.5	59
59	MECHANICAL BEHAVIOR OF PLANT TISSUES AS INFERRED FROM THE THEORY OF PRESSURIZED CELLULAR SOLIDS. American Journal of Botany, 1989, 76, 929-937.	0.8	56
60	Biomass partitioning and leaf N,P? stoichiometry: comparisons between tree and herbaceous current-year shoots. Plant, Cell and Environment, 2006, 29, 2030-2042.	2.8	56
61	A general review of the biomechanics of root anchorage. Journal of Experimental Botany, 2019, 70, 3439-3451.	2.4	56
62	Underwater CAM photosynthesis elucidated by Isoetes genome. Nature Communications, 2021, 12, 6348.	5.8	56
63	THE MOTION OF WINDBORNE POLLEN GRAINS AROUND CONIFER OVULATE CONES: IMPLICATIONS ON WIND POLLINATION. American Journal of Botany, 1984, 71, 356-374.	0.8	55
64	Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS ONE, 2019, 14, e0223521.	1.1	55
65	Plant biomechanics: an overview and prospectus. American Journal of Botany, 2006, 93, 1369-1378.	0.8	52
66	The evolutionary origins of cell type diversification and the role of intrinsically disordered proteins. Journal of Experimental Botany, 2018, 69, 1437-1446.	2.4	52
67	The Allometry of Plant Reproductive Biomass and Stem Diameter. American Journal of Botany, 1993, 80, 461.	0.8	52
68	THE ELASTIC MODULI AND MECHANICS OF POPULUS TREMULOIDES (SALICACEAE) PETIOLES IN BENDING AND TORSION. American Journal of Botany, 1991, 78, 989-996.	0.8	51
69	Predicting the Height of Fossil Plant Remains: An Allometric Approach to an Old Problem. American Journal of Botany, 1994, 81, 1235.	0.8	51
70	A Comparison between the Record Height-to-Stem Diameter Allometries of Pachycaulis and Leptocaulis Species. Annals of Botany, 2006, 97, 79-83.	1.4	50
71	DEPENDENCY OF THE TENSILE MODULUS ON TRANSVERSE DIMENSIONS, WATER POTENTIAL, AND CELL NUMBER OF PITH PARENCHYMA. American Journal of Botany, 1988, 75, 1286-1292.	0.8	47
72	Computing factors of safety against windâ€induced tree stem damage. Journal of Experimental Botany, 2000, 51, 797-806.	2.4	47

#	Article	IF	Citations
73	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	1.8	47
74	Charting the genomic landscape of seed-free plants. Nature Plants, 2021, 7, 554-565.	4.7	47
75	Adaptive walks through fitness landscapes for early vascular land plants. American Journal of Botany, 1997, 84, 16-25.	0.8	46
76	Dynamical Patterning Modules, Biogeneric Materials, and the Evolution of Multicellular Plants. Frontiers in Plant Science, 2018, 9, 871.	1.7	46
77	Petiole mechanics, light interception by Lamina, and "Economy in Design― Oecologia, 1992, 90, 518-526.	0.9	45
78	Complete Genomes of Symbiotic Cyanobacteria Clarify the Evolution of Vanadium-Nitrogenase. Genome Biology and Evolution, 2019, 11, 1959-1964.	1.1	45
79	The allometry of safety-factors for plant height. American Journal of Botany, 1994, 81, 345-351.	0.8	44
80	Identifying a mysterious aquatic fern gametophyte. Plant Systematics and Evolution, 2009, 281, 77-86.	0.3	44
81	Is there foul play in the leaf pocket? The metagenome of floating fern <i>Azolla</i> reveals endophytes that do not fix N ₂ but may denitrify. New Phytologist, 2018, 217, 453-466.	3.5	42
82	The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nature Plants, 2022, 8, 500-512.	4.7	42
83	Predicting the allometry of leaf surface area and dry mass. American Journal of Botany, 2009, 96, 531-536.	0.8	41
84	GROWTH PATTERNS OF PLANTS THAT MAXIMIZE VERTICAL GROWTH AND MINIMIZE INTERNAL STRESSES. American Journal of Botany, 1982, 69, 1367-1374.	0.8	40
85	Evolutionary aspects of plant photoreceptors. Journal of Plant Research, 2016, 129, 115-122.	1.2	40
86	Evidence for a conducting strand in early Silurian (Llandoverian) plants: implications for the evolution of the land plants. Paleobiology, 1983, 9, 126-137.	1.3	39
87	A REEVALUATION OF THE ZOSTEROPHYLLOPHYTINA WITH COMMENTS ON THE ORIGIN OF LYCOPODS. American Journal of Botany, 1990, 77, 274-283.	0.8	39
88	Evidence for "diminishing returns―from the scaling of stem diameter and specific leaf area. American Journal of Botany, 2008, 95, 549-557.	0.8	38
89	NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nature Communications, 2019, 10, 2630.	5.8	38
90	Organellomic data sets confirm a cryptic consensus on (unrooted) landâ€plant relationships and provide new insights into bryophyte molecular evolution. American Journal of Botany, 2020, 107, 91-115.	0.8	38

#	Article	IF	Citations
91	Evolutionary trends in safety factors against wind-induced stem failure. American Journal of Botany, 2001, 88, 1266-1278.	0.8	37
92	Size-dependent species richness: trends within plant communities and across latitude. Ecology Letters, 2003, 6, 631-636.	3.0	37
93	Ontogenetic shift in the scaling of dark respiration with wholeâ€plant mass in seven shrub species. Functional Ecology, 2010, 24, 502-512.	1.7	37
94	Tissueâ€direct PCR, a rapid and extractionâ€free method for barcoding of ferns. Molecular Ecology Resources, 2010, 10, 92-95.	2.2	37
95	Allometric theory and the mechanical stability of large trees: proof and conjecture. American Journal of Botany, 2006, 93, 824-828.	0.8	36
96	Aerodynamics and pollen ultrastructure in <i>Ephedra</i> . American Journal of Botany, 2015, 102, 457-470.	0.8	36
97	FLEXURAL RIGIDITY OF CHIVE AND ITS RESPONSE TO WATER POTENTIAL. American Journal of Botany, 1987, 74, 1033-1044.	0.8	35
98	Identifying Morphological and Mechanical Traits Associated with Stem Lodging in Bioenergy Sorghum (Sorghum bicolor). Bioenergy Research, 2017, 10, 635-647.	2.2	35
99	The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Functional Ecology, 2019, 33, 2081-2094.	1.7	35
100	Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. Global Ecology and Conservation, 2019, 19, e00666.	1.0	35
101	THE ALLOMETRY OF PLANT REPRODUCTIVE BIOMASS AND STEM DIAMETER. American Journal of Botany, 1993, 80, 461-467.	0.8	34
102	I <scp>nterspecific allometries of critical buckling height and actual plant height</scp> . American Journal of Botany, 1994, 81, 1275-1279.	0.8	34
103	Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology, 2014, 95, 3161-3172.	1.5	34
104	The scaling of the hydraulic architecture in poplar leaves. New Phytologist, 2017, 214, 145-157.	3.5	34
105	Mechanical Behavior of Plant Tissues as Inferred from the Theory of Pressurized Cellular Solids. American Journal of Botany, 1989, 76, 929.	0.8	34
106	BIOMECHANICS OF PSILOTUM NUDUM AND SOME EARLY PALEOZOIC VASCULAR SPOROPHYTES. American Journal of Botany, 1990, 77, 590-606.	0.8	33
107	Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	33
108	The Allometry of Safety-Factors for Plant Height. American Journal of Botany, 1994, 81, 345.	0.8	33

#	Article	IF	Citations
109	FLEXURAL STIFFNESS ALLOMETRIES OF ANGIOSPERM AND FERN PETIOLES AND RACHISES: EVIDENCE FOR BIOMECHANICAL CONVERGENCE. Evolution; International Journal of Organic Evolution, 1991, 45, 734-750.	1.1	32
110	The allometry of saguaro height. American Journal of Botany, 1994, 81, 1161-1168.	0.8	32
111	The biomechanics of <i>Pachycereus pringlei</i> root systems. American Journal of Botany, 2002, 89, 12-21.	0.8	32
112	The evoâ€devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evolution & Development, 2013, 15, 466-474.	1.1	32
113	"Diminishing returns―in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos, Southeast China. American Journal of Botany, 2017, 104, 993-998.	0.8	32
114	Phloem networks in leaves. Current Opinion in Plant Biology, 2018, 43, 29-35.	3.5	32
115	The many roads to and from multicellularity. Journal of Experimental Botany, 2020, 71, 3247-3253.	2.4	32
116	Size-related changes in the primary xylem anatomy of some early tracheophytes. Paleobiology, 1984, 10, 487-506.	1.3	31
117	Computer simulations of early land plant branching morphologies: canalization of patterns during evolution?. Paleobiology, 1982, 8, 196-210.	1.3	30
118	Orderâ€level fern plastome phylogenomics: new insights from Hymenophyllales. American Journal of Botany, 2018, 105, 1545-1555.	0.8	30
119	A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Current Biology, 2021, 31, 2857-2867.e4.	1.8	30
120	Biophysical effects on plant competition and coexistence. Functional Ecology, 2013, 27, 854-864.	1.7	29
121	Plant type dominates fineâ€root C:N:P stoichiometry across China: A metaâ€analysis. Journal of Biogeography, 2020, 47, 1019-1029.	1.4	29
122	Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Annals of Forest Science, 2020, 77, 1.	0.8	29
123	Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology, 1997, 23, 63-76.	1.3	28
124	Effects of biotic and abiotic factors on forest biomass fractions. National Science Review, 2021, 8, nwab025.	4.6	28
125	Preferential states of longitudinal tension in the outer tissues of Taraxacum Officinale (Asteraceae) peduncles. American Journal of Botany, 1998, 85, 1068-1081.	0.8	27
126	Wood biomechanics and anatomy of PACHYCEREUS PRINGLEI. American Journal of Botany, 2000, 87, 469-481.	0.8	27

#	Article	IF	Citations
127	Functional adaptation and phenotypic plasticity at the cellular and whole plant level. Journal of Biosciences, 2009, 34, 613-620.	0.5	27
128	The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. New Phytologist, 2017, 214, 1145-1157.	3.5	27
129	Linkage between species traits and plant phenology in an alpine meadow. Oecologia, 2021, 195, 409-419.	0.9	27
130	Size-Dependent Variations in Plant Growth Rates and the " \hat{A} 3/4 Power Rule". American Journal of Botany, 1994, 81, 134.	0.8	27
131	A wholeâ€plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 2022, 110, 248-261.	1.9	27
132	BRANCHING PATTERNS OF SALICORNIA EUROPAEA (CHENOPODIACEAE) AT DIFFERENT SUCCESSIONAL STAGES: A COMPARISON OF THEORETICAL AND REAL PLANTS. American Journal of Botany, 1988, 75, 501-512.	0.8	26
133	NODAL SEPTA AND THE RIGIDITY OF AERIAL SHOOTS OF EQUISETUM HYEMALE. American Journal of Botany, 1989, 76, 521-531.	0.8	26
134	A first glimpse at genes important to the Azolla–Nostoc symbiosis. Symbiosis, 2019, 78, 149-162.	1,2	26
135	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	0.8	26
136	The diversity and community structure of symbiotic cyanobacteria in hornworts inferred from longâ€read amplicon sequencing. American Journal of Botany, 2021, 108, 1731-1744.	0.8	26
137	A Reevaluation of the Zosterophyllophytina with Comments on the Origin of Lycopods. American Journal of Botany, 1990, 77, 274.	0.8	26
138	Sizeâ€dependent variations in plant growth rates and the "¾â€power rule― American Journal of Botany, 1994, 81, 134-144.	0.8	25
139	Hornworts: An Overlooked Window into Carbon-Concentrating Mechanisms. Trends in Plant Science, 2017, 22, 275-277.	4.3	25
140	Water content quantitatively affects metabolic rates over the course of plant ontogeny. New Phytologist, 2020, 228, 1524-1534.	3.5	25
141	AERODYNAMICS OF EPHEDRA TRIFURCA: I. POLLEN GRAIN VELOCITY FIELDS AROUND STEMS BEARING OVULES. American Journal of Botany, 1986, 73, 966-979.	0.8	24
142	Genome-wide organellar analyses from the hornwort Leiosporoceros dussii show low frequency of RNA editing. PLoS ONE, 2018, 13, e0200491.	1.1	24
143	CONIFER OVULATE CONE MORPHOLOGY: IMPLICATIONS ON POLLEN IMPACTION PATTERNS. American Journal of Botany, 1983, 70, 568-577.	0.8	23
144	Differences in the scaling of area and mass of <i>Ginkgo biloba</i> (Ginkgoaceae) leaves and their relevance to the study of specific leaf area. American Journal of Botany, 2011, 98, 1381-1386.	0.8	23

#	Article	IF	CITATIONS
145	The Motion of Windborne Pollen Grains Around Conifer Ovulate Cones: Implications on Wind Pollination. American Journal of Botany, 1984, 71, 356.	0.8	23
146	The Allometry of Saguaro Height. American Journal of Botany, 1994, 81, 1161.	0.8	23
147	THE INFLUENCE OF PALEOZOIC OVULE AND CUPULE MORPHOLOGIES ON WIND POLLINATION. Evolution; International Journal of Organic Evolution, 1983, 37, 968-986.	1.1	22
148	Stem biomechanics of three columnar cacti from the Sonoran Desert. American Journal of Botany, 1998, 85, 1082-1090.	0.8	22
149	Biomechanics of the columnar cactus Pachycereus pringlei. American Journal of Botany, 1999, 86, 767-775.	0.8	22
150	The effect of twig architecture and seed number on seed size variation in subtropical woody species. New Phytologist, 2009, 183, 1212-1221.	3.5	22
151	Crowdfunding the Azolla fern genome project: a grassroots approach. GigaScience, 2014, 3, 16.	3.3	22
152	Life history strategies drive sizeâ€dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere, 2019, 10, e02709.	1.0	22
153	<i>Carica papaya</i> (Caricaceae): a case study into the effects of domestication on plant vegetative growth and reproduction. American Journal of Botany, 2007, 94, 999-1002.	0.8	21
154	Biophysical and size-dependent perspectives on plant evolution. Journal of Experimental Botany, 2013, 64, 4817-4827.	2.4	21
155	Maidenhair Ferns, <i>Adiantum</i> , are Indeed Monophyletic and Sister to Shoestring Ferns, Vittarioids (Pteridaceae). Systematic Botany, 2016, 41, 17-23.	0.2	21
156	Organelle Genome Inheritance in Deparia Ferns (Athyriaceae, Aspleniineae, Polypodiales). Frontiers in Plant Science, 2018, 9, 486.	1.7	21
157	The <i>Bio</i> â€Logic and machinery of plant morphogenesis. American Journal of Botany, 2003, 90, 515-525.	0.8	20
158	The hydraulic architecture of Ginkgo leaves. American Journal of Botany, 2017, 104, 1285-1298.	0.8	20
159	Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos. Journal of the Royal Society Interface, 2017, 14, 20170156.	1.5	20
160	The evolutionary ecology (evo-eco) of plant asexual reproduction. Evolutionary Ecology, 2017, 31, 317-332.	0.5	20
161	A worldwide phylogeny of <i>Adiantum</i> (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture. Taxon, 2018, 67, 488-502.	0.4	20
162	Dependency of the Tensile Modulus on Transverse Dimensions, Water Potential, and Cell Number of Pith Parenchyma. American Journal of Botany, 1988, 75, 1286.	0.8	20

#	Article	IF	CITATIONS
163	Flexural Stiffness and Modulus of Elasticity of Flower Stalks from Allium Stalks from Allium sativum as Measured by Multiple Resonance Frequency Spectra. American Journal of Botany, 1988, 75, 1517.	0.8	19
164	Plant Development, Auxin, and the Subsystem Incompleteness Theorem. Frontiers in Plant Science, 2012, 3, 37.	1.7	19
165	Did meiosis evolve before sex and the evolution of eukaryotic life cycles?. BioEssays, 2014, 36, 1091-1101.	1.2	19
166	Stem Diameter (and Not Length) Limits Twig Leaf Biomass. Frontiers in Plant Science, 2019, 10, 185.	1.7	19
167	Comparison of the Scaling Relationships of Leaf Biomass versus Surface Area between Spring and Summer for Two Deciduous Tree Species. Forests, 2020, 11, 1010.	0.9	19
168	Leaf Bilateral Symmetry and the Scaling of the Perimeter vs. the Surface Area in 15 Vine Species. Forests, 2020, 11, 246.	0.9	19
169	ORGANELLE PRESERVATION AND PROTOPLAST PARTITIONING IN FOSSIL ANGIOSPERM LEAF TISSUES. American Journal of Botany, 1983, 70, 543-548.	0.8	18
170	AERODYNAMICS OF WIND POLLINATION IN SIMMONDSIA CHINENSIS (LINK) SCHNEIDER. American Journal of Botany, 1985, 72, 530-539.	0.8	18
171	EFFECTS OF TISSUE VOLUME AND LOCATION ON THE MECHANICAL CONSEQUENCES OF DEHYDRATION OF PETIOLES. American Journal of Botany, 1991, 78, 361-369.	0.8	18
172	Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest. Annals of Botany, 2015, 115, 303-313.	1.4	18
173	An <i>Agrobacterium</i> ê€mediated stable transformation technique for the hornwort model <i>Anthoceros agrestis</i> . New Phytologist, 2021, 232, 1488-1505.	3.5	18
174	A Roadmap for Fern Genome Sequencing. American Fern Journal, 2019, 109, 212.	0.2	18
175	Growth Patterns of Plants that Maximize Vertical Growth and Minimize Internal Stresses. American Journal of Botany, 1982, 69, 1367.	0.8	18
176	Variation in plant carbon, nitrogen and phosphorus contents across the drylands of China. Functional Ecology, 2022, 36, 174-186.	1.7	18
177	Ontogenetic changes in the numbers of short―vs. longâ€shoots account for decreasing specific leaf area in <i>Acer rubrum</i> (Aceraceae) as trees increase in size. American Journal of Botany, 2010, 97, 27-37.	0.8	17
178	Searching for Diamonds in the Apomictic Rough: A Case Study Involving < > Boechera lignifera< l> (Brassicaceae). Systematic Botany, 2016, 40, 1031-1044.	0.2	17
179	A Superellipse with Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo. Symmetry, 2020, 12, 2073.	1.1	17
180	COMPUTER PROGRAM FOR THREEâ€DIMENSIONAL RECONSTRUCTIONS AND NUMERICAL ANALYSES OF PLANT ORGANS FROM SERIAL SECTIONS. American Journal of Botany, 1987, 74, 1595-1599.	0.8	16

#	Article	lF	Citations
181	Does disturbance prevent total basal area and biomass in indigenous forests from being at equilibrium with the local environment?. Journal of Tropical Ecology, 2004, 20, 595-597.	0.5	16
182	The Hybrid Origin of <i>Adiantum meishanianum</i> (Pteridaceae): A Rare and Endemic Species in Taiwan. Systematic Botany, 2014, 39, 1034-1041.	0.2	16
183	Flexural Rigidity of Chive and its Response to Water Potential. American Journal of Botany, 1987, 74, 1033.	0.8	16
184	Interspecific allometries of critical buckling height and actual plant height., 1994, 81, 1275.		16
185	Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. American Journal of Botany, 2022, 109, 899-909.	0.8	16
186	Voigt and Reuss Models for Predicting Changes in Young's Modulus of Dehydrating Plant Organs. Annals of Botany, 1992, 70, 347-355.	1.4	15
187	Changes in the factor of safety within the superstructure of a dicot tree. American Journal of Botany, 1999, 86, 688-696.	0.8	15
188	On the mechanical properties of the rare endemic cactus <i>Stenocereus eruca</i> and the related species <i>S. gummosus</i> . American Journal of Botany, 2003, 90, 663-674.	0.8	15
189	A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings. Tree Physiology, 2015, 35, 599-607.	1.4	15
190	Kleiber's Law: How the <i>Fire of Life</i> ignited debate, fueled theory, and neglected plants as model organisms. Plant Signaling and Behavior, 2015, 10, e1036216.	1.2	15
191	Comment on "Critical wind speed at which trees break― Physical Review E, 2016, 94, 067001.	0.8	15
192	A stepâ€byâ€step protocol for meiotic chromosome counts in flowering plants: A powerful and economical technique revisited. Applications in Plant Sciences, 2020, 8, e11342.	0.8	15
193	The Elastic Moduli and Mechanics of Populus tremuloides (Salicaceae) Petioles in Bending and Torsion. American Journal of Botany, 1991, 78, 989.	0.8	15
194	Comparisons Among Biomass Allocation and Spatial Distribution Patterns of Some Vine, Pteridophyte, and Gymnosperm Shoots. American Journal of Botany, 1994, 81, 1416.	0.8	15
195	EVIDENCE FOR XYLEM CONSTRICTIONS IN THE PRIMARY VASCULATURE OF PSILOPHYTON DAWSONII, AN EMSIAN TRIMEROPHYTE. American Journal of Botany, 1985, 72, 674-685.	0.8	14
196	Mechanical properties of wood disproportionately increase with increasing density. American Journal of Botany, 2012, 99, 169-170.	0.8	14
197	A Phyletic Perspective on Cell Growth. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019158.	2.3	14
198	Global Data Analysis Shows That Soil Nutrient Levels Dominate Foliar Nutrient Resorption Efficiency in Herbaceous Species. Frontiers in Plant Science, 2018, 9, 1431.	1.7	14

#	Article	IF	CITATIONS
199	Polarity, planes of cell division, and the evolution of plant multicellularity. Protoplasma, 2019, 256, 585-599.	1.0	14
200	The Leaf Economics Spectrum Constrains Phenotypic Plasticity Across a Light Gradient. Frontiers in Plant Science, 2020, 11, 735.	1.7	14
201	PHYSIOLOGICAL AND MORPHOLOGICAL MODIFICATIONS OF PLANTAGO MAJOR (PLANTAGINACEAE) IN RESPONSE TO LIGHT CONDITIONS. American Journal of Botany, 1989, 76, 370-382.	0.8	13
202	BENDING STIFFNESS OF CYLINDRICAL PLANT ORGANS WITH A †COREâ€RIND†CONSTRUCTION: EVIDENCE JUNCUS EFFUSUS LEAVES. American Journal of Botany, 1991, 78, 561-568.	FROM 0.8	13
203	Reexamination of a canonical model for plant organ biomass partitioning. American Journal of Botany, 2003, 90, 250-254.	0.8	13
204	Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant and Soil, 2011, 340, 337-345.	1.8	13
205	Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecology, 2012, 213, 1489-1502.	0.7	13
206	Amphimixis and the individual in evolving populations: does Weismann's Doctrine apply to all, most or a few organisms?. Die Naturwissenschaften, 2014, 101, 357-372.	0.6	13
207	BRANCHING PATTERNS OF SALICORNIA EUROPAEA (CHENOPODIACEAE) AT DIFFERENT SUCCESSIONAL STAGES: A COMPARISON OF THEORETICAL AND REAL PLANTS. , 1988, 75, 501.		13
208	EXTRACELLULAR FREEZING IN EQUISETUM HYEMALE. American Journal of Botany, 1989, 76, 627-631.	0.8	12
209	Comparisons among biomass allocation and spatial distribution patterns of some vine, pteridophyte, and gymnosperm shoots. American Journal of Botany, 1994, 81, 1416-1421.	0.8	12
210	LIGHT HARVESTING "FITNESS LANDSCAPES―FOR VERTICAL SHOOTS WITH DIFFERENT PHYLLOTACTIC PATTERNS. Series in Mathematical Biology and Medicine, 1998, , 759-773.	0.1	12
211	Temperature and water content effects on the viscoelastic behavior of Tilia americana (Tiliaceae) sapwood. Trees - Structure and Function, 2004, 18, 339-345.	0.9	12
212	COMPUTER SIMULATIONS OF PLANT BIODIVERSITY IN STABLE AND UNSTABLE ENVIRONMENTS: A TEST OF THE NEUTRAL BIODIVERSITY THEORY. Journal of Biological Systems, 2011, 19, 1-17.	0.5	12
213	Nodal Septa and the Rigidity of Aerial Shoots of Equisetum hyemale. American Journal of Botany, 1989, 76, 521.	0.8	12
214	Stepâ \in byâ \in step protocol for the isolation and transient transformation of hornwort protoplasts. Applications in Plant Sciences, 2022, 10, e11456.	0.8	12
215	Influence of Leaf Age on the Scaling Relationships of Lamina Mass vs. Area. Frontiers in Plant Science, 2022, 13, 860206.	1.7	12
216	AEROBIOLOGY OF SYMPLOCARPUS FOETIDUS: INTERACTIONS BETWEEN THE SPATHE AND SPADIX. American Journal of Botany, 1984, 71, 843-850.	0.8	11

#	Article	IF	CITATIONS
217	GRAVITYâ€INDUCED EFFECTS ON MATERIAL PROPERTIES AND SIZE OF LEAVES ON HORIZONTAL SHOOTS OF ACER SACCHARUM (ACERACEAE). American Journal of Botany, 1992, 79, 820-827.	0.8	11
218	Difference in Floral Traits, Pollination, and Reproductive Success between White and Blue Flowers of <i> Gentiana leucomelaena </i> (Gentianaceae) in an Alpine Meadow. Arctic, Antarctic, and Alpine Research, 2011, 43, 410-416.	0.4	11
219	Boron and the evolutionary development of roots. Plant Signaling and Behavior, 2017, 12, e1320631.	1.2	11
220	Evolutionary walks through a land plant morphospace. , 0, .		11
221	AERODYNAMICS OF EPHEDRA TRIFURCA: I. POLLEN GRAIN VELOCITY FIELDS AROUND STEMS BEARING OVULES. , 1986, 73, 966.		11
222	Biomechanics of Psilotum nudum and Some Early Paleozoic Vascular Sporophytes. American Journal of Botany, 1990, 77, 590.	0.8	11
223	On the Allometry of Biomass Partitioning and Light Harvesting for Plants with Leafless Stems. Journal of Theoretical Biology, 2002, 217, 47-52.	0.8	10
224	Climbing Plants: Attachment and the Ascent for Light. Current Biology, 2011, 21, R199-R201.	1.8	10
225	A Biophysical Perspective on the Pollination Biology of Ephedra nevadensis and E. trifurca. Botanical Review, The, 2015, 81, 28-41.	1.7	10
226	A predictive nondestructive model for the covariation of tree height, diameter and stem volume scaling relationships. Scientific Reports, 2016, 6, 31008.	1.6	10
227	Linking species performance to community structure as affected by UV-B radiation: an attenuation experiment. Journal of Plant Ecology, 2018, 11, 286-296.	1.2	10
228	A global phylogeny of <i>Stegnogramma</i> ferns (Thelypteridaceae): generic and sectional revision, historical biogeography and evolution of leaf architecture. Cladistics, 2020, 36, 164-183.	1.5	10
229	Bending Stiffness of Cylindrical Plant Organs with a 'Core-Rind' Construction: Evidence from Juncus effusus Leaves. American Journal of Botany, 1991, 78, 561.	0.8	10
230	RELATIONSHIPS AMONG SHOOT APICAL MERISTEM ONTOGENIC FEATURES IN TRICHOCEREUS PACHANOI AND MELOCACTUS MATANZANUS (CACTACEAE). American Journal of Botany, 1981, 68, 101-106.	0.8	9
231	AEROBIOLOGY AND POLLEN CAPTURE OF ORCHARD-GROWN PISTACIA VERA (ANACARDIACEAE). American Journal of Botany, 1988, 75, 1813-1829.	0.8	9
232	A novel chloroplast gene reported for flagellate plants. American Journal of Botany, 2018, 105, 117-121.	0.8	9
233	Evolution of Protein Ductility in Duplicated Genes of Plants. Frontiers in Plant Science, 2018, 9, 1216.	1.7	9
234	Allocation Strategies for Seed Nitrogen and Phosphorus in an Alpine Meadow Along an Altitudinal Gradient on the Tibetan Plateau. Frontiers in Plant Science, 2020, 11, 614644.	1.7	9

#	Article	IF	Citations
235	Morphological (and not anatomical or reproductive) features define early vascular plant phylogenetic relationships. American Journal of Botany, 2020, 107, 477-488.	0.8	9
236	Aerodynamics of Wind Pollination in Simmondsia chinensis (Link) Schneider. American Journal of Botany, 1985, 72, 530.	0.8	9
237	Computer Program for Three-Dimensional Reconstructions and Numerical Analyses of Plant Organs from Serial Sections. American Journal of Botany, 1987, 74, 1595.	0.8	9
238	Physiological and Morphological Modifications of Plantago major (Plantaginaceae) in Response to Light Conditions. American Journal of Botany, 1989, 76, 370.	0.8	9
239	Decolonizing botanical genomics. Nature Plants, 2021, 7, 1542-1543.	4.7	9
240	WIND POLLINATION OF TAXUS CUSPIDATA. American Journal of Botany, 1985, 72, 1-13.	0.8	8
241	EQUATIONS FOR THE MOTION OF AIRBORNE POLLEN GRAINS NEAR THE OVULATE ORGANS OF WINDâ€POLLINATED PLANTS. American Journal of Botany, 1988, 75, 433-444.	0.8	8
242	DETERMINATE GROWTH OF ALLIUM SATIVUM PEDUNCLES: EVIDENCE OF DETERMINATE GROWTH AS A DESIGN FACTOR FOR BIOMECHANICAL SAFETY. American Journal of Botany, 1990, 77, 762-771.	0.8	8
243	Embryo morphology and seedling evolution. , 2008, , 103-129.		8
244	Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Tree Physiology, 2015, 35, 621-631.	1.4	8
245	Spatiotemporal distribution of essential elements through <i>Populus</i> leaf ontogeny. Journal of Experimental Botany, 2016, 67, 2777-2786.	2.4	8
246	Admixture, evolution, and variation in reproductive isolation in the Boechera puberula clade. BMC Evolutionary Biology, 2018, 18, 61.	3.2	8
247	Stem and leaf growth rates define the leaf size vs. number trade-off. AoB PLANTS, 2019, 11, plz063.	1.2	8
248	Evidence for Xylem Constrictions in the Primary Vasculature of Psilophyton dawsonii, an Emsian Trimerophyte. American Journal of Botany, 1985, 72, 674.	0.8	8
249	<i>Monodopsis</i> and <i>Vischeria</i> Genomes Shed New Light on the Biology of Eustigmatophyte Algae. Genome Biology and Evolution, 2021, 13, .	1.1	8
250	Accelerating gametophytic growth in the model hornwort <i>Anthoceros agrestis</i> . Applications in Plant Sciences, 2022, 10, e11460.	0.8	8
251	SAFETY FACTORS IN VERTICAL STEMS: EVIDENCE FROM (i> EQUISETUM HYEMALE (i> . Evolution; International Journal of Organic Evolution, 1989, 43, 1625-1636.	1.1	7
252	Turning over an old leaf. Nature, 1990, 344, 587-588.	13.7	7

#	Article	IF	CITATIONS
253	Testing the packing rule across the twig \hat{a} equivalent of temperate woody species. Trees - Structure and Function, 2012, 26, 1737-1745.	0.9	7
254	A General Model for Describing the Ovate Leaf Shape. Symmetry, 2021, 13, 1524.	1.1	7
255	Climate change affects detritus decomposition rates by modifying arthropod performance and species interactions. Current Opinion in Insect Science, 2021, 47, 62-66.	2.2	7
256	Taxing Debate for Taxonomists. Science, 2001, 292, 2249b-2250.	6.0	7
257	Ferns: The Final Frond-tier in Plant Model Systems. American Fern Journal, 2019, 109, 192.	0.2	7
258	ORGANELLE PRESERVATION AND PROTOPLAST PARTITIONING IN FOSSIL ANGIOSPERM LEAF TISSUES. , 1983, 70, 543.		7
259	Tree Size Influences Leaf Shape but Does Not Affect the Proportional Relationship Between Leaf Area and the Product of Length and Width. Frontiers in Plant Science, 0, 13, .	1.7	7
260	Size-dependent variation in plant form. Current Biology, 2017, 27, R900-R905.	1.8	6
261	From Goethe's plant archetype via Haeckel's biogenetic law to plant evo-devo 2016. Theory in Biosciences, 2017, 136, 49-57.	0.6	6
262	Domestic honeybees affect the performance of pre-dispersal seed predators in an alpine meadow. Oecologia, 2018, 187, 113-122.	0.9	6
263	Influence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa. Global Ecology and Conservation, 2019, 19, e00657.	1.0	6
264	Dietary differences between grasshoppers are associated with life history tradeoffs in an alpine meadow. Ecological Research, 2021, 36, 842-853.	0.7	6
265	An elliptical blade is not a true ellipse, but a superellipse–Evidence from two Michelia species. Journal of Forestry Research, 2022, 33, 1341-1348.	1.7	6
266	Extracellular Freezing in Equisetum hyemale. American Journal of Botany, 1989, 76, 627.	0.8	6
267	Determinate Growth of Allium sativum Peduncles: Evidence of Determinate Growth as a Design Factor for Biomechanical Safety. American Journal of Botany, 1990, 77, 762.	0.8	6
268	AEROBIOLOGY AND POLLEN CAPTURE OF ORCHARD-GROWN PISTACIA VERA (ANACARDIACEAE). , 1988, 75, 1813.		6
269	Effects of <i>Rht</i> â€dosage on the breaking strength of wheat seedling leaves. American Journal of Botany, 1996, 83, 567-572.	0.8	5
270	The evolution of the plant genome-to-morphology auxin circuit. Theory in Biosciences, 2016, 135, 175-186.	0.6	5

#	Article	IF	Citations
271	Domesticated honeybees facilitate interspecific hybridization between two <i>Taraxacum</i> congeners. Journal of Ecology, 2018, 106, 1204-1216.	1.9	5
272	Conifer Ovulate Cone Morphology: Implications on Pollen Impaction Patterns. American Journal of Botany, 1983, 70, 568.	0.8	5
273	Sizing up life and death. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15589-15590.	3.3	4
274	Do plants explore habitats before exploiting them? An explicit test using two stoloniferous herbs. Science Bulletin, 2012, 57, 2425-2432.	1.7	4
275	The Optimization of Seed Yield across the Flowering Season of <i>Gentiana leucomelaena</i> (Gentianaceae), an Herbaceous Tibetan Annual. Arctic, Antarctic, and Alpine Research, 2014, 46, 548-557.	0.4	4
276	<i>Asplenium pifongiae</i> (Aspleniaceae: Polypodiales), a New Species from Taiwan. Systematic Botany, 2016, 41, 24-31.	0.2	4
277	Wind Pollination of Taxus cuspidata. American Journal of Botany, 1985, 72, 1.	0.8	4
278	Equations for the Motion of Airborne Pollen Grains Near the Ovulate Organs of Wind-Pollinated Plants. American Journal of Botany, 1988, 75, 433.	0.8	4
279	Paleophytochemistry: Implications Concerning Plant Evolution. Paleobiology, 1981, 7, 1-3.	1.3	3
280	Suboptimal oviposition of tephritid flies supports parasitoid wasps. Ecological Entomology, 2019, 44, 717-720.	1.1	3
281	Aerobiology of Symplocarpus foetidus: Interactions between the Spathe and Spadix. American Journal of Botany, 1984, 71, 843.	0.8	3
282	Effects of Rht-Dosage on the Breaking Strength of Wheat Seedling Leaves. American Journal of Botany, 1996, 83, 567.	0.8	3
283	Dynamic plastid and mitochondrial genomes in Chaetopeltidales (Chlorophyceae) and characterization of a new chlorophyte taxon. American Journal of Botany, 2022, 109, 939-951.	0.8	3
284	Thinking Outside the HOX. Biological Theory, 2006, 1, 128-129.	0.8	2
285	Measuring the tempo of plant death and birth. New Phytologist, 2015, 207, 254-256.	3.5	2
286	Historical revisionism and the inheritance theories of Darwin and Weismann. Die Naturwissenschaften, 2015, 102, 27.	0.6	2
287	Early Plant History: Something Borrowed, Something New?. Science, 1999, 285, 1673b-1673.	6.0	2
288	Gravity-Induced Effects on Material Properties and Size of Leaves on Horizontal Shoots of Acer saccharum (Aceraceae). American Journal of Botany, 1992, 79, 820.	0.8	2

#	Article	IF	CITATIONS
289	EFFECTS OF TISSUE VOLUME AND LOCATION ON THE MECHANICAL CONSEQUENCES OF DEHYDRATION OF PETIOLES., 1991, 78, 361.		2
290	Reply to Waller. Paleobiology, 1984, 10, 117-120.	1.3	1
291	Modeling fossil plant form-function relationships: A critique. Paleobiology, 2000, 26, 289-304.	1.3	1
292	Computing factors of safety against windâ€induced tree stem damage. Journal of Experimental Botany, 2000, 51, 797-806.	2.4	1
293	Genetic effects on the biomass partitioning and growth of <i>Pisum </i> American Journal of Botany, 2008, 95, 424-433.	0.8	1
294	Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Systematics and Evolution, 2020, 306, 1.	0.3	1
295	Plant volatiles mediate evolutionary interactions between plants and tephritid flies and are evolutionarily more labile than nonâ€volatile defenses. Journal of Animal Ecology, 2021, 90, 846-858.	1.3	1
296	Re-evaluating the Systematics of Dendrolycopodium Using Restriction-Site Associated DNA-Sequencing. Frontiers in Plant Science, $0,13,.$	1.7	1
297	Phenotypic Walks Through Plant Fitness Landscapes: Does Increasing Functional Complexity Expedite Morphological Diversification?. The Paleontological Society Special Publications, 1996, 8, 289-289.	0.0	0
298	Phylogenetic Methods to Study Light Signaling. Methods in Molecular Biology, 2019, 2026, 265-276.	0.4	0
299	Characterizing Culturable Bacterial Endophytes of Five Lycopodiaceae Species. American Fern Journal, 2022, 112, .	0.2	0
300	Systematics and Plastome Evolution in Schizaeaceae. Frontiers in Plant Science, 0, 13, .	1.7	0