Dongjie Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2430597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoproterozoic oxygenation event: From shallow marine to atmosphere. Bulletin of the Geological Society of America, 2023, 135, 753-766.	3.3	12
2	Mesoproterozoic seafloor authigenic glauconite-berthierine: Indicator of enhanced reverse weathering on early Earth. American Mineralogist, 2022, 107, 116-130.	1.9	6
3	Hexagonal magnetite in Algoma-type banded iron formations of the ca. 2.52 Ga Baizhiyan Formation, North China: Evidence for a green rust precursor?. American Mineralogist, 2022, 107, 970-984.	1.9	5
4	Low level of phosphorous concentration in terminal Paleoproterozoic shallow seawater: Evidence from Chuanlinggou ironstone on North China Platform. Precambrian Research, 2022, 370, 106554.	2.7	8
5	Early Mesoproterozoic Ca-carbonate precipitates record fluctuations in shallow marine oxygenation. Precambrian Research, 2022, 373, 106630.	2.7	6
6	Heterogeneous oxygenation coupled with low phosphorus bio-availability delayed eukaryotic diversification in Mesoproterozoic oceans: Evidence from the ca 1.46ÂGa Hongshuizhuang Formation of North China. Precambrian Research, 2021, 354, 106050.	2.7	9
7	A transient swing to higher oxygen levels in the atmosphere and oceans at ~1.4ÂGa. Precambrian Research, 2021, 354, 106058.	2.7	24
8	A Pulsed Oxygenation in Terminal Paleoproterozoic Ocean: Evidence From the Transition Between the Chuanlinggou and Tuanshanzi Formations, North China. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009612.	2.5	10
9	Silicaâ€rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts. Terra Nova, 2021, 33, 494-501.	2.1	7
10	Nitrogen cycle perturbations linked to metazoan diversification during the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109392.	2.3	25
11	Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559, 109966.	2.3	17
12	The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 2020, 105, 1412-1423.	1.9	17
13	Coupled Nitrate and Phosphate Availability Facilitated the Expansion of Eukaryotic Life at Circa 1.56ÂGa. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005487.	3.0	17
14	Apatite-glaucony association in the Ediacaran Doushantuo Formation, South China and implications for marine redox conditions. Precambrian Research, 2020, 347, 105842.	2.7	13
15	Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China. Precambrian Research, 2020, 341, 105667.	2.7	26
16	Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 2019, 76, 1-18.	6.0	29
17	A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth and Planetary Science Letters, 2019, 527, 115797.	4.4	73
18	lodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research, 2019, 322, 160-169.	2.7	36

Dongjie Tang

#	Article	IF	CITATIONS
19	Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Research, 2018, 58, 1-15.	6.0	37
20	Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504, 86-103.	2.3	26
21	Sunspot cycles recorded in siliciclastic biolaminites at the dawn of the Neoproterozoic Sturtian glaciation in South China. Precambrian Research, 2018, 315, 75-91.	2.7	12
22	Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: An example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 2017, 294, 214-229.	2.7	37
23	Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 2017, 102, 2317-2332.	1.9	43
24	Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 2016, 276, 145-157.	2.7	91
25	Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems. Astrobiology, 2015, 15, 523-537.	3.0	9
26	Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences, 2015, 107, 195-211.	2.3	22
27	Increase of seawater Mo inventory and ocean oxygenation during the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 621-631.	2.3	35
28	Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Research, 2015, 28, 432-450.	6.0	30
29	Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 2014, 248, 1-16.	2.7	27
30	Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform. Science China Earth Sciences, 2014, 57, 919-929.	5.2	44
31	Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences, 2013, 102, 401-413.	1.8	27
32	Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. Journal of Geology, 2013, 121, 489-502.	1.4	20
33	MICROFABRICS IN MESOPROTEROZOIC MICRODIGITATE STROMATOLITES: EVIDENCE OF BIOGENICITY AND ORGANOMINERALIZATION AT MICRON AND NANOMETER SCALES. Palaios, 2013, 28, 178-194.	1.3	23