David Artigas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243044/publications.pdf Version: 2024-02-01

ΠΑΝΙΟ ΔΟΤΙCAS

#	Article	IF	CITATIONS
1	Surface bound states in the continuum in Dyakonov structures. Physical Review B, 2022, 105, .	3.2	5
2	Unidirectional guided resonances in anisotropic waveguides. Optics Letters, 2021, 46, 2545.	3.3	7
3	Bound States in the Continuum and Unidirectional Guided Resonances in Anisotropic Structures with Multiple Radiation Channels. , 2021, , .		Ο
4	Slow light mediated by mode topological transitions in hyperbolic waveguides. Optics Letters, 2021, 46, 58.	3.3	5
5	Conformal transformation of Dyakonov surface waves into bound states of cylindrical metamaterials. Physical Review B, 2019, 100, .	3.2	6
6	Existence Loci of Bound States in the Continuum in the Parameter Space of Anisotropic Planar Structures. , 2019, , .		0
7	Waveguide Stopped Light Mediated by Mode Transitions. , 2019, , .		Ο
8	Transition from Dirac points to exceptional points in anisotropic waveguides. Physical Review Research, 2019, 1, .	3.6	7
9	Angular control of anisotropy-induced bound states in the continuum. Optics Letters, 2019, 44, 5362.	3.3	16
10	Topological properties of bound states in the continuum in geometries with broken anisotropy symmetry. Physical Review A, 2018, 98, .	2.5	27
11	Nonlinear imaging applications of high-power lasers: figures of merit. , 2018, , 377-408.		О
12	Anisotropy-induced photonic bound states in the continuum. Nature Photonics, 2017, 11, 232-236.	31.4	138
13	STED imaging performance estimation by means of Fourier transform analysis. Biomedical Optics Express, 2017, 8, 2472.	2.9	9
14	Sub-diffraction discrimination with polarization-resolved two-photon excited fluorescence microscopy. Optica, 2017, 4, 911.	9.3	15
15	Bound states in the continuum in anisotropic structures. , 2017, , .		0
16	Light sheet microscopy for visualiasing fast biological dynamics in 3D. , 2016, , .		0
17	Light Sheet Microscopy with Wavefront Coding for Fast Volumetric Imaging of Biological Samples. , 2016, , .		0
18	Decoupled illumination detection in light sheet microscopy for fast volumetric imaging. Optica, 2015, 2, 702.	9.3	83

#	Article	IF	CITATIONS
19	Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron. Optics Express, 2014, 22, 16456.	3.4	15
20	Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy. Biomedical Optics Express, 2014, 5, 4362.	2.9	33
21	Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nature Nanotechnology, 2014, 9, 419-424.	31.5	86
22	Quantitative Imaging of Microtubule Alteration as an Early Marker ofÂAxonal Degeneration after Ischemia in Neurons. Biophysical Journal, 2013, 104, 968-975.	0.5	34
23	Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron. , 2013, , .		0
24	Practical dyakonons. Optics Letters, 2012, 37, 4311.	3.3	54
25	Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles. Biomedical Optics Express, 2012, 3, 1492.	2.9	83
26	Effect of molecular organization on the image histograms of polarization SHG microscopy. Biomedical Optics Express, 2012, 3, 2681.	2.9	43
27	Coupling plasmons and dyakonons. Optics Letters, 2012, 37, 1983.	3.3	16
28	Depth aberrations characterization in linear and nonlinear microscopy schemes using a shack-Hartmann wavefront sensor. , 2012, , .		0
29	Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms. Biomedical Optics Express, 2011, 2, 739.	2.9	67
30	Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomedical Optics Express, 2011, 2, 3135.	2.9	115
31	Dyakonov surface wave resonant transmission. Optics Express, 2011, 19, 6339.	3.4	14
32	Imaging amylopectin's order in starch using 3-dimensional polarization SHG. , 2011, , .		0
33	Portable semiconductor disk laser for in vivo tissue monitoring: a platform for the development of clinical applications. Proceedings of SPIE, 2011, , .	0.8	0
34	Open-loop wavefront sensing scheme for specimen aberrations correction in two-photon excited fluorescence microscopy. Proceedings of SPIE, 2011, , .	0.8	0
35	59: Ultrastructural analysis of myocardiocyte sarcomeric changes in relation with cardiac dysfunction in human fetuses with intrauterine growth restriction. American Journal of Obstetrics and Gynecology, 2011, 204, S34.	1.3	3
36	Three-dimensional polarization second harmonic generation (3D-PSHG) imaging: the effect of the tilted-off the plane SHG active structures. , 2011, , .		2

#	Article	IF	CITATIONS
37	Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms. , 2011, , .		Ο
38	In-vivo third-harmonic generation microscopy at 1550nm three-dimensional long-term time-lapse studies in living C. elegans embryos. Proceedings of SPIE, 2011, , .	0.8	0
39	Polarization second harmonic generation (PSHC) imaging of neurons: estimating the effective orientation of the SHG source in axons. Proceedings of SPIE, 2010, , .	0.8	1
40	Practical optical quality assessment and correction of a nonlinear microscope. Proceedings of SPIE, 2010, , .	0.8	1
41	Signalling effect of NIR pulsed lasers on axonal growth. Journal of Neuroscience Methods, 2010, 186, 196-201.	2.5	28
42	Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy. Journal of Optics (United Kingdom), 2010, 12, 084007.	2.2	34
43	Optical extraction of the helical pitch angle of amylopectin in starch. Proceedings of SPIE, 2010, , .	0.8	0
44	Assessing structural characteristics of axons in cortical neurons using polarization sensitive SHG. Proceedings of SPIE, 2010, , .	0.8	0
45	Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis. Journal of Biomedical Optics, 2010, 15, 1.	2.6	27
46	A simple scanless two-photon fluorescence microscope using selective plane illumination. Optics Express, 2010, 18, 8491.	3.4	72
47	Fast image analysis in polarization SHG microscopy. Optics Express, 2010, 18, 17209.	3.4	54
48	In vivo, pixel-resolution mapping of thick filaments' orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy. Journal of Biomedical Optics, 2009, 14, 014001.	2.6	88
49	Polarization conversion spectroscopy of hybrid modes. Optics Letters, 2009, 34, 3911.	3.3	8
50	Dyakonov Surface Waves. Optics and Photonics News, 2009, 20, 25.	0.5	7
51	Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response. Optics Express, 2009, 17, 10168.	3.4	58
52	Estimation of the effective orientation of the SHG source in primary cortical neurons. Optics Express, 2009, 17, 14418.	3.4	52
53	Observation of Dyakonov Surface Waves. Physical Review Letters, 2009, 102, 043903.	7.8	152
54	Influence of distant femtosecond laser pulses on growth cone fillopodia. Cytotechnology, 2008, 58, 103-111.	1.6	4

#	Article	IF	CITATIONS
55	Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy. Journal of Microscopy, 2008, 230, 70-75.	1.8	22
56	Decrease in laser ablation threshold for epithelial tissue microsurgery in a living <i>Drosophila</i> embryo during dorsal closure. Journal of Microscopy, 2008, 232, 362-368.	1.8	10
57	Starch granules as a probe for the polarization at the sample plane of a high resolution multiphoton microscope. , 2008, , .		6
58	Dyakonov Surface Waves: A Review. Electromagnetics, 2008, 28, 126-145.	0.7	149
59	Two-photon fluorescence imaging and femtosecond laser microsurgery to study drosophila dorsal closure. Proceedings of SPIE, 2008, , .	0.8	0
60	Polarization dependant in vivo second harmonic generation imaging of Caenorhabditis elegans vulval, pharynx, and body wall muscles. , 2008, , .		3
61	Ultra-short pulses to signal neuronal growth cone machinery. , 2007, , .		0
62	Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior. Journal of Archaeological Science, 2007, 34, 1594-1600.	2.4	20
63	Simultaneous analytical characterisation of two ultrashort laser pulses using spectrally resolved interferometric correlations. Optics Express, 2006, 14, 4538.	3.4	19
64	Enhanced localization of Dyakonov-like surface waves in left-handed materials. Physical Review B, 2006, 74, .	3.2	23
65	Dyakonov Surface Waves in Photonic Metamaterials. Physical Review Letters, 2005, 94, 013901.	7.8	130
66	Measurement of electric field by interferometric spectral trace observation. Optics Letters, 2005, 30, 1063.	3.3	38
67	Optical Dyakonov surface waves at magnetic interfaces. Optics Letters, 2005, 30, 3075.	3.3	35
68	ldler-resonant femtosecond tandem optical parametric oscillator tuning from 21 μm to 42 μm. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1551.	2.1	20
69	Ultrashort pulse characterisation with SHG collinear-FROG. Optics Express, 2004, 12, 1169.	3.4	87
70	Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens. Optics Letters, 2004, 29, 2282.	3.3	31
71	Periodically switched nonlinear structures for frequency conversion: theory and experimental demonstration. IEEE Journal of Quantum Electronics, 2004, 40, 1122-1130.	1.9	11
72	Nonlinear microscopy pulse optimization at the sample plane using second-harmonic generation from starch 2004 5463 56		2

starch. , 2004, 5463, 56.

#	Article	IF	CITATIONS
73	Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion. Optics Letters, 2003, 28, 543.	3.3	19
74	Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 1309.	2.1	21
75	Dispersion-managed cnoidal pulse trains. Physical Review E, 2003, 68, 026613.	2.1	11
76	Pulse compression and gain enhancement in a degenerate optical parametric amplifier based on aperiodically poled crystals. Optics Letters, 2002, 27, 442.	3.3	15
77	Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals. Optics Letters, 2002, 27, 851.	3.3	30
78	Quadratic solitons: existence versus excitation. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 497-505.	2.9	11
79	High idler conversion in femtosecond optical parametric oscillators. Optics Communications, 2002, 210, 113-120.	2.1	6
80	Efficiency of quadratic soliton generation. Optics Letters, 2001, 26, 1277.	3.3	14
81	Femtosecond second-harmonic pulse compression in aperiodically poled lithium niobate: a systematic comparison of experiment and theory. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1212.	2.1	25
82	Generation of multicolor spatial solitons with pulsed light. Optics Communications, 2001, 192, 347-355.	2.1	20
83	Continuous-wave self-pumped optical parametric oscillator based on Yb3+-doped bulk periodically poled LiNbO3 (MgO). Applied Physics Letters, 2001, 79, 293-295.	3.3	23
84	Soliton content with quadratic nonlinearities. , 2001, , .		0
85	Dynamics of quadratic soliton excitation. Optics Communications, 1999, 162, 347-356.	2.1	11
86	Soliton content with quadratic nonlinearities. Optics Communications, 1999, 164, 153-159.	2.1	27
87	Dynamic behaviour in a nonlinear directional coupler with feedback. Journal of Modern Optics, 1997, 44, 1207-1216.	1.3	11
88	Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity. Optics Communications, 1997, 143, 322-328.	2.1	49
89	Supermode analysis of the three-waveguide nonlinear directional coupler: the critical power. Optics Communications, 1996, 131, 53-60.	2.1	8
90	Nonlinear resonant conversion of modes in optical waveguides. Optics Communications, 1995, 118, 28-34.	2.1	3

#	Article	IF	CITATIONS
91	Phase space description of nonlinear directional couplers. IEEE Journal of Quantum Electronics, 1994, 30, 1587-1595.	1.9	8
92	<title>Effects of saturation and asymmetrical distribution of nonlinearity on nonlinear directional couplers</title> ., 1994, , .		0