List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2430340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. Journal of Membrane Science, 2009, 331, 21-30.	4.1	208
2	Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. Journal of Membrane Science, 2011, 376, 188-195.	4.1	131
3	Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 2013, 427, 21-29.	4.1	125
4	Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. Journal of Membrane Science, 2008, 322, 423-428.	4.1	124
5	The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: Polyethersulfone/MCM-41. Journal of Membrane Science, 2016, 513, 20-32.	4.1	112
6	Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. Journal of Membrane Science, 2012, 415-416, 469-477.	4.1	107
7	Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles. Journal of Membrane Science, 2015, 479, 11-19.	4.1	98
8	Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination, 2014, 352, 166-173.	4.0	94
9	Study on the morphology and gas permeation property of polyurethane membranes. Journal of Membrane Science, 2011, 385-386, 76-85.	4.1	86
10	The effect of urethane and urea content on the gas permeation properties of poly(urethane-urea) membranes. Journal of Membrane Science, 2010, 354, 40-47.	4.1	79
11	Separation of ethylene/ethane and propylene/propane by cellulose acetate–silica nanocomposite membranes. Journal of Membrane Science, 2012, 423-424, 97-106.	4.1	74
12	Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. Journal of Industrial and Engineering Chemistry, 2016, 44, 67-72.	2.9	74
13	Polyurethane-Silica Nanocomposite Membranes for Separation of Propane/Methane and Ethane/Methane. Industrial & Engineering Chemistry Research, 2014, 53, 2011-2021.	1.8	70
14	High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renewable Energy, 2016, 99, 867-874.	4.3	70
15	Polyurethane gas separation membranes with ethereal bonds in the hard segments. Journal of Membrane Science, 2016, 513, 58-66.	4.1	69
16	Separation of C3H8 and C2H6 from CH4 in polyurethane–zeolite 4à and ZSM-5 mixed matrix membranes. Separation and Purification Technology, 2015, 141, 394-402.	3.9	66
17	Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. Journal of Environmental Management, 2018, 226, 329-339.	3.8	64
18	Pretreatment of Rice Straw for the Improvement of Biogas Production. Energy & Fuels, 2015, 29, 3770-3775.	2.5	61

#	Article	IF	CITATIONS
19	Plasticization resistant crosslinked polyurethane gas separation membranes. Journal of Materials Chemistry A, 2016, 4, 17431-17439.	5.2	57
20	Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes. Separation and Purification Technology, 2017, 185, 202-214.	3.9	55
21	Gas permeation properties of cellulose acetate/silica nanocomposite membrane. Advances in Polymer Technology, 2018, 37, 2043-2052.	0.8	51
22	The effect of various types of post-synthetic modifications on the structure and properties of MCM-41 mesoporous silica. Progress in Organic Coatings, 2016, 90, 163-170.	1.9	50
23	Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane. Korean Journal of Chemical Engineering, 2014, 31, 2041-2050.	1.2	49
24	Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean Journal of Chemical Engineering, 2015, 32, 97-103.	1.2	49
25	Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542, 143-149.	4.1	46
26	Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polymer Bulletin, 2020, 77, 5529-5552.	1.7	46
27	Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO ₂ -Plasticization Resistance for Thin Film Gas Separation Membranes. ACS Applied Materials & Interfaces, 2018, 10, 17366-17374.	4.0	45
28	Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chemical Engineering Science, 2018, 192, 688-698.	1.9	43
29	Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. Journal of Applied Polymer Science, 2008, 110, 1093-1098.	1.3	42
30	Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenders. Journal of Membrane Science, 2019, 574, 136-146.	4.1	42
31	A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC. Energy, 2022, 258, 124726.	4.5	40
32	Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid. Fibers and Polymers, 2017, 18, 2041-2048.	1.1	39
33	The Gas Separation Performance of Polyurethane–Zeolite Mixed Matrix Membranes. Advances in Polymer Technology, 2018, 37, 339-348.	0.8	38
34	Olefin–paraffin separation performance of polyimide Matrimid®/silica nanocomposite membranes. RSC Advances, 2016, 6, 23746-23759.	1.7	37
35	Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method. Separation and Purification Technology, 2008, 62, 642-647.	3.9	33
36	Improving antifouling performance of PAN hollow fiber membrane using surface modification method. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55, 42-48.	2.7	33

#	Article	IF	CITATIONS
37	Polyurethaneâ€mesoporous silica gas separation membranes. Polymers for Advanced Technologies, 2018, 29, 874-883.	1.6	33
38	Gasâ€separation behavior of poly(ether sulfone)–poly(ethylene glycol) blend membranes. Journal of Applied Polymer Science, 2018, 135, 46845.	1.3	32
39	Separation performance of poly(urethane–urea) membranes in the separation of C2 and C3 hydrocarbons from methane. Journal of Membrane Science, 2013, 434, 171-183.	4.1	31
40	Titanate nanotubes–incorporated poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chemical Engineering Research and Design, 2019, 145, 99-111.	2.7	31
41	Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. Journal of Colloid and Interface Science, 2019, 533, 658-670.	5.0	31
42	Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Materials Science and Engineering C, 2016, 63, 106-116.	3.8	30
43	Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes. Chemical Engineering Science, 2019, 205, 58-73.	1.9	28
44	Polyurethane/Poly(vinyl alcohol) Blend Membranes for Gas Separation. Fibers and Polymers, 2018, 19, 1119-1127.	1.1	25
45	Surface modification of PAN hollow fiber membrane by chemical reaction. Fibers and Polymers, 2015, 16, 788-793.	1.1	23
46	Novel Application of a Polyurethane Membrane for Efficient Separation of Hydrogen Sulfide from Binary and Ternary Gas Mixtures. ChemistrySelect, 2018, 3, 3302-3308.	0.7	23
47	Synthesis, characterization and gas separation properties of novel copolyimide membranes based on flexible etheric–aliphatic moieties. RSC Advances, 2016, 6, 35751-35763.	1.7	21
48	Optimization of the gas separation performance of polyurethane–zeolite 3A and ZSM-5 mixed matrix membranes using response surface methodology. Chinese Journal of Chemical Engineering, 2019, 27, 110-129.	1.7	21
49	Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. Journal of Polymer Research, 2013, 20, 1.	1.2	19
50	Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer, 2020, 205, 122792.	1.8	19
51	Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chemical Engineering Research and Design, 2021, 167, 157-168.	2.7	19
52	Influence of Blend Composition and Silica Nanoparticles on the Morphology and Gas Separation Performance of PU/PVA Blend Membranes. Membranes, 2019, 9, 82.	1.4	18
53	Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanes. European Polymer Journal, 2020, 122, 109346.	2.6	18
54	Elucidating the Significance of Segmental Mixing in Determining the Gas Transport Properties of Polyurethanes. Macromolecules, 2016, 49, 4220-4228.	2.2	16

#	Article	IF	CITATIONS
55	Tuning the morphology of segmented block copolymers with Zr-MOF nanoparticles for durable and efficient hydrocarbon separation membranes. Journal of Materials Chemistry A, 2020, 8, 9382-9391.	5.2	16
56	Recognition of polymer-particle interfacial morphology in mixed matrix membranes through ideal permeation predictive models. Polymer Testing, 2017, 63, 25-37.	2.3	15
57	Improving the Transport and Antifouling Properties of Poly(vinyl chloride) Hollow-Fiber Ultrafiltration Membranes by Incorporating Silica Nanoparticles. ACS Omega, 2018, 3, 17439-17446.	1.6	15
58	A Multiâ€Structural Model for Prediction of Effective Gas Permeability in Mixedâ€Matrix Membranes. Macromolecular Chemistry and Physics, 2013, 214, 2367-2376.	1.1	13
59	The Role of Interfacial Morphology in the Gas Transport Behavior of Nanocomposite Membranes: A Mathematical Modeling Approach. Industrial & Engineering Chemistry Research, 2019, 58, 11022-11037.	1.8	13
60	Stable waterborne epoxy emulsions and the effect of silica nanoparticles on their coatings properties. Progress in Organic Coatings, 2021, 156, 106250.	1.9	13
61	Application of Cardo-type polyimide (PI) and polyphenylene oxide (PPO) hollow fiber membranes in two-stage membrane systems for CO2/CH4 separation. Journal of Membrane Science, 2008, 324, 85-94.	4.1	12
62	Application of response surface methodology (RSM) to optimize operating conditions during ultrafiltration of oil-in-water emulsion. Desalination and Water Treatment, 2015, 55, 615-623.	1.0	12
63	Polysulfone Membranes Incorporated with Reduced Graphene Oxide Nanoparticles for Enhanced Olefin/Paraffin Separation. ChemistrySelect, 2020, 5, 3675-3681.	0.7	12
64	Enhanced CO2 capture through bulky poly(urethane-urea)-based MMMs containing hyperbranched triazine based silica nanoparticles. Separation and Purification Technology, 2020, 241, 116734.	3.9	12
65	Design and optimization of a hybrid process based on hollow-fiber membrane/coagulation for wastewater treatment. Environmental Science and Pollution Research, 2021, 28, 8235-8245.	2.7	12
66	An investigation into electrochemical properties of poly(ether sulfone)/poly(vinyl pyrrolidone) heterogeneous cation-exchange membranes by using design of experiment method. Journal of Colloid and Interface Science, 2018, 532, 546-556.	5.0	11
67	Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmiumâ€based metal organic framework. Journal of Applied Polymer Science, 2020, 137, 48704.	1.3	11
68	Pervaporation separation of water–isopropyl alcohol mixture by PVA/LiBr membrane. Polymer Engineering and Science, 2019, 59, E101.	1.5	10
69	Gas separation through polyurethane– <scp>ZnO</scp> mixed matrix membranes and mathematical modeling of the interfacial morphology. SPE Polymers, 2020, 1, 113-124.	1.4	10
70	Efficient Chemical Coagulation-Electrocoagulation-Membrane Filtration Integrated Systems for Baker's Yeast Wastewater Treatment: Experimental and Economic Evaluation. , 2022, 3, 100032.		10
71	Gas Separation Polysulfone Membranes Modified by Cadmium-based Nanoparticles. Fibers and Polymers, 2018, 19, 2049-2055.	1.1	9
72	Effects of the preparation conditions on ethylene/vinyl acetate membrane morphology with the use of scanning electron microscopy. Journal of Applied Polymer Science, 2007, 105, 2683-2688.	1.3	6

#	Article	IF	CITATIONS
73	Dual-Mode Sorption of Inorganic Acids in Polybenzimidazole (PBI) Membrane. Journal of Macromolecular Science - Physics, 2010, 49, 1128-1135.	0.4	6
74	Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefinâ€Paraffin Separation. Chemical Engineering and Technology, 2019, 42, 2292-2301.	0.9	6
75	Non-newtonian pressure drop and critical reynolds number through rectangular duct. International Communications in Heat and Mass Transfer, 2001, 28, 555-563.	2.9	5
76	Poly(vinyl alcohol)/methoxy poly(ethylene glycol) methacrylate-TiO2 nanocomposite as a novel polymeric membrane for enhanced gas separation. Journal of the Iranian Chemical Society, 2019, 16, 523-533.	1.2	5
77	Methoxy poly (ethylene glycol) methacrylate-TiO ₂ /poly (methyl methacrylate) nanocomposite: an efficient membrane for gas separation. Polymer-Plastics Technology and Materials, 2019, 58, 789-802.	0.6	5
78	Influence of solvent and nanoparticles on the morphology and gas separation properties of copolyimide membranes. Journal of Applied Polymer Science, 2020, 137, 49337.	1.3	5
79	Comparative assessment of hydrocarbon separation performance of bulky poly(urethane-urea)s toward rubbery membranes. Journal of Natural Gas Science and Engineering, 2022, 98, 104356.	2.1	5
80	A comprehensive modeling approach for determining the role and nature of interfacial morphology in mixed matrix membranes. Computational Materials Science, 2021, 197, 110590.	1.4	4
81	Valorization of cheese whey to eco-friendly food packaging and biomethane via a biorefinery. Journal of Cleaner Production, 2022, 366, 132870.	4.6	4
82	Dual-mode transport of inorganic acids through polybenzimidazole (PBI) membrane. Journal of Polymer Research, 2012, 19, 1.	1.2	3
83	Determination of maximum possible contribution of porous particles in gas transport properties of their corresponding mixed matrix membranes. SPE Polymers, 2020, 1, 125-138.	1.4	3
84	Stepwise surface modification of mesoporous silica and its use in poly(urethaneâ€urea) composite films. Polymer International, 2022, 71, 107-116.	1.6	3
85	Hydrophobic Ag-Containing Polyoctylmethylsiloxane-Based Membranes for Ethylene/Ethane Separation in Gas-Liquid Membrane Contactor. Polymers, 2022, 14, 1625.	2.0	3
86	Influence of solvent, Lewis acid–base complex, and nanoparticles on the morphology and gas separation properties of polysulfone membranes. Polymer Engineering and Science, 2021, 61, 1931-1942.	1.5	2
87	Melt linear viscoelastic rheological analysis to assess the microstructure of polyamide 6–acrylonitrile butadiene styrene terpolymer immiscible blends via the application of fractional Zener and Coran models. Journal of Applied Polymer Science, 2017, 134, 45423.	1.3	0