Antonella Torosantucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2429990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimised production of an anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnology, 2020, 20, 15.	3.3	9
2	Comparative analysis of plantâ€produced, recombinant dimeric IgA against cell wall βâ€glucan of pathogenic fungi. Biotechnology and Bioengineering, 2017, 114, 2729-2738.	3.3	5
3	Antibodies against a β-glucan-protein complex of Candida albicans and its potential as indicator of protective immunity in candidemic patients. Scientific Reports, 2017, 7, 2722.	3.3	12
4	A Murine, Bispecific Monoclonal Antibody Simultaneously Recognizing β-Glucan and MP65 Determinants in Candida Species. PLoS ONE, 2016, 11, e0148714.	2.5	11
5	Unravelling Glucan Recognition Systems by Glycome Microarrays Using the Designer Approach and Mass Spectrometry. Molecular and Cellular Proteomics, 2015, 14, 974-988.	3.8	58
6	Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses. PLoS ONE, 2015, 10, e0142531.	2.5	16
7	Deciphering the structure–immunogenicity relationship of anti- <i>Candida</i> glycoconjugate vaccines. Chemical Science, 2014, 5, 4302-4311.	7.4	55
8	Toward Developing a Universal Treatment for Fungal Disease Using Radioimmunotherapy Targeting Common Fungal Antigens. Mycopathologia, 2012, 173, 463-471.	3.1	42
9	Plant production of antiâ€Î²â€glucan antibodies for immunotherapy of fungal infections in humans. Plant Biotechnology Journal, 2011, 9, 776-787.	8.3	22
10	Hyr1 Protein and βâ€Glucan Conjugates as Antiâ€ <i>Candida</i> Vaccines. Journal of Infectious Diseases, 2010, 202, 1930-1930.	4.0	11
11	Endogenous PGE2 promotes the induction of human Th17 responses by fungal β-glucan. Journal of Leukocyte Biology, 2010, 88, 947-954.	3.3	41
12	A β-glucan-conjugate vaccine and anti-β-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine, 2010, 28, 1717-1725.	3.8	74
13	Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine, 2010, 28, 2615-2623.	3.8	104
14	Protection by Anti-β-Glucan Antibodies Is Associated with Restricted β-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence. PLoS ONE, 2009, 4, e5392.	2.5	184
15	Anti-β-glucan antibodies in healthy human subjects. Vaccine, 2009, 27, 513-519.	3.8	52
16	Candida albicans cell wall comprises a branched β-d-(1→6)-glucan with β-d-(1→3)-side chains. Carbohydrate Research, 2008, 343, 1050-1061.	2.3	44
17	Increase of Virulence and Its Phenotypic Traits in Drug-Resistant Strains of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 927-936.	3.2	60
18	β-Glucan of <i>Candida albicans</i> cell wall causes the subversion of human monocyte differentiation into dendritic cells. Journal of Leukocyte Biology, 2007, 82, 1136-1142.	3.3	37

#	Article	IF	CITATIONS
19	An Anti-Î ² -Glucan Monoclonal Antibody Inhibits Growth and Capsule Formation of Cryptococcus neoformans In Vitro and Exerts Therapeutic, Anticryptococcal Activity In Vivo. Infection and Immunity, 2007, 75, 5085-5094.	2.2	152
20	Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cellular Microbiology, 2007, 9, 368-381.	2.1	284
21	Opportunistic fungi and fungal infections: the challenge of a single, general antifungal vaccine. Expert Review of Vaccines, 2006, 5, 859-867.	4.4	30
22	An Outline of the Role of Anti-Candida Antibodies Within the Context of Passive Immunization and Protection from Candidiasis. Current Molecular Medicine, 2005, 5, 377-382.	1.3	45
23	A novel glyco-conjugate vaccine against fungal pathogens. Journal of Experimental Medicine, 2005, 202, 597-606.	8.5	409
24	Induction of protective immunity by Legionella pneumophila flagellum in an A/J mouse model. Vaccine, 2005, 23, 4811-4820.	3.8	26
25	The interaction of human dendritic cells with yeast and germ-tube forms ofCandida albicansleads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. Journal of Leukocyte Biology, 2004, 75, 117-126.	3.3	62
26	Candida albicans Yeast and Germ Tube Forms Interfere Differently with Human Monocyte Differentiation into Dendritic Cells: a Novel Dimorphism-Dependent Mechanism To Escape the Host's Immune Response. Infection and Immunity, 2004, 72, 833-843.	2.2	51
27	Antiretroviral Therapy with Protease Inhibitors Has an Early, Immune Reconstitution–Independent Beneficial Effect onCandidaVirulence and Oral Candidiasis in Human Immunodeficiency Virus–Infected Subjects. Journal of Infectious Diseases, 2002, 185, 188-195.	4.0	79
28	Deletion of the Two-Component Histidine Kinase Gene (CHK1) of Candida albicans Contributes to Enhanced Growth Inhibition and Killing by Human Neutrophils In Vitro. Infection and Immunity, 2002, 70, 985-987.	2.2	44
29	Interplay between Protective and Inhibitory Antibodies Dictates the Outcome of Experimentally Disseminated Candidiasis in Recipients of a Candida albicans Vaccine. Infection and Immunity, 2002, 70, 5462-5470.	2.2	89
30	Antigenic Properties and Processing Requirements of 65-Kilodalton Mannoprotein, a Major Antigen Target of Anti-Candida Human T-Cell Response, as Disclosed by Specific Human T-Cell Clones. Infection and Immunity, 2001, 69, 3728-3736.	2.2	44
31	Defective Induction of Interleukin-12 in Human Monocytes by Germ-Tube Forms of Candida albicans. Infection and Immunity, 2000, 68, 5628-5634.	2.2	38
32	Role of Protease Inhibitors in Preventing Recurrent Oral Candidosis in Patients With HIV Infection: A Prospective Case-Control Study. Journal of Acquired Immune Deficiency Syndromes (1999), 1999, 21, 20-25.	2.1	126
33	In Vitro and In Vivo Anticandidal Activity of Human Immunodeficiency Virus Protease Inhibitors. Journal of Infectious Diseases, 1999, 180, 448-453.	4.0	205
34	Interaction between Human Interleukin-2-Activated Natural Killer Cells and Heat-Killed Germ Tube Forms ofCandida albicans. Cellular Immunology, 1998, 186, 28-38.	3.0	21
35	Immunogenic and protective Candida albicans constituents. Research in Immunology, 1998, 149, 289-299.	0.9	25
36	Possible participation of polymorphonuclear cells stimulated by microbial immunomodulators in the dysregulated cytokine patterns of AIDS patients. Journal of Leukocyte Biology, 1997, 62, 60-66.	3.3	25

#	Article	IF	CITATIONS
37	Responsiveness of human polymorphonuclear cells (PMNL) to stimulation by a mannoprotein fraction (MP-F2) of Candida albicans ; enhanced production of IL-6 and tumour necrosis factor-alpha (TNF-α) by MP-F2-stimulated PMNL from HIV-infected subjects. Clinical and Experimental Immunology, 1997, 107, 451-457.	2.6	21
38	Purification and biochemical characterization of a 65-kilodalton mannoprotein (MP65), a main target of anti-Candida cell-mediated immune responses in humans. Infection and Immunity, 1996, 64, 2577-2584.	2.2	73
39	Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans. Infection and Immunity, 1995, 63, 280-288.	2.2	31
40	A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infection and Immunity, 1994, 62, 5353-5360.	2.2	73
41	Mannoprotein-Induced Anti-U937 Cell Cytotoxicity in Peripheral Blood Mononuclear Cells from Uninfected or HIV-Infected Subjects: Role of Interferon-γ and Tumor Necrosis Factor-α. Cellular Immunology, 1993, 152, 530-543.	3.0	6
42	Identification of a 65-kDa Mannoprotein as a Main Target of Human CellMediated Immune Response to Candida albicans. Journal of Infectious Diseases, 1993, 168, 427-435.	4.0	71
43	Identification of a Mannoprotein Fraction from Candida albicans that Enhances Human Polymorphonuclear Leukocyte (PMNL) Functions and Stimulates Lactoferrin in PMNL Inhibition of Candidal Growth. Journal of Infectious Diseases, 1992, 166, 1103-1112.	4.0	45
44	Cell Wall Constituents of Candida Albicans as Biological Response Modifiers. , 1992, , 159-166.		3
45	In Vitro production of tumor necrosis factor by murine splenic macrophages stimulated with mannoprotein constituents of Candida albicans cell wall. Cellular Immunology, 1991, 134, 65-76.	3.0	79
46	Enhancing effect ofCandida albicans mannoproteins on the induction of a primary antibody response in cultures of human lymphocytes. Cytotechnology, 1991, 5, 130-131.	1.6	0
47	19F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrobial Agents and Chemotherapy, 1990, 34, 1996-2006.	3.2	25
48	Nutrition-dependent modulations of protein synthesis inCandida albicansduring germ-tube formation or maintenance of the yeast form inN-acetyl glucosamine media. FEMS Microbiology Letters, 1986, 36, 231-237.	1.8	5
49	A 19F nuclear magnetic resonance study of uptake and metabolism of 5-fluorocytosine in susceptible and resistant strains of Candida albicans. Antimicrobial Agents and Chemotherapy, 1986, 29, 303-308.	3.2	16
50	Antimorphogenic effects of 2-deoxy-D-glucose inCandida albicans. FEMS Microbiology Letters, 1984, 24, 335-339.	1.8	4
51	Protection against Lethal Challenge by <i>Legionella pneumophila</i> in A/J Mice Following Immunization with Flagella. , 0, , 129-132.		0