Ignasi Sirés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242994/publications.pdf

Version: 2024-02-01

		23879	18944
133	15,691	60	123
papers	citations	h-index	g-index
134	134	134	9204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. Journal of Hazardous Materials, 2022, 423, 127005.	6.5	38
2	Cathodic generation of hydrogen peroxide sustained by electrolytic O2 in a rotating cylinder electrode (RCE) reactor. Electrochimica Acta, 2022, 404, 139621.	2.6	8
3	Influence of ruthenium doping on UV- and visible-light photoelectrocatalytic color removal from dye solutions using a TiO2 nanotube array photoanode. Chemosphere, 2021, 267, 128925.	4.2	15
4	Photoelectro-Fenton treatment of pesticide triclopyr at neutral pH using Fe(III)–EDDS under UVA light or sunlight. Environmental Science and Pollution Research, 2021, 28, 23833-23848.	2.7	9
5	Upgrading and expanding the electro-Fenton and related processes. Current Opinion in Electrochemistry, 2021, 27, 100686.	2.5	61
6	Evidence of cathodic peroxydisulfate activation via electrochemical reduction at Fe(II) sites of magnetite-decorated porous carbon: Application to dye degradation in water. Journal of Electroanalytical Chemistry, 2021, 902, 115807.	1.9	12
7	Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. Water Research, 2020, 169, 115219.	5. 3	50
8	Magnetic MIL(Fe)-type MOF-derived N-doped nano-ZVI@C rods as heterogeneous catalyst for the electro-Fenton degradation of gemfibrozil in a complex aqueous matrix. Applied Catalysis B: Environmental, 2020, 266, 118604.	10.8	157
9	Corrosion behavior of pure titanium anodes in saline medium and their performance for humic acid removal by electrocoagulation. Chemosphere, 2020, 246, 125674.	4.2	28
10	Mineralization of Acid Red 1 azo dye by solar photoelectro-Fenton-like process using electrogenerated HClO and photoregenerated Fe(II). Chemosphere, 2020, 246, 125697.	4.2	48
11	Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions. Science of the Total Environment, 2020, 747, 141541.	3.9	47
12	New electrochemical processes for the environmental sustainability. Chemosphere, 2020, 257, 127188.	4.2	1
13	Chitosan-Derived Nitrogen-Doped Carbon Electrocatalyst for a Sustainable Upgrade of Oxygen Reduction to Hydrogen Peroxide in UV-Assisted Electro-Fenton Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 14425-14440.	3. 2	78
14	A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices. Applied Catalysis B: Environmental, 2020, 277, 119240.	10.8	38
15	In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. Journal of Environmental Management, 2020, 270, 110835.	3.8	32
16	Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton-based processes using chalcopyrite as sustainable catalyst. Science of the Total Environment, 2020, 740, 140154.	3.9	81
17	Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. Chemosphere, 2020, 259, 127466.	4.2	33
18	Mechanism and stability of an Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micropollutants under UVA and visible light irradiation. Water Research, 2020, 184, 115986.	5.3	73

#	Article	IF	Citations
19	A Highly Stable Metal–Organic Framework-Engineered FeS ₂ /C Nanocatalyst for Heterogeneous Electro-Fenton Treatment: Validation in Wastewater at Mild pH. Environmental Science & Technology, 2020, 54, 4664-4674.	4.6	118
20	Blue LED light-driven photoelectrocatalytic removal of naproxen from water: Kinetics and primary by-products. Journal of Electroanalytical Chemistry, 2020, 867, 114192.	1.9	19
21	Electrochemical treatment of butylated hydroxyanisole: Electrocoagulation versus advanced oxidation. Separation and Purification Technology, 2019, 208, 19-26.	3.9	14
22	Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode. Applied Catalysis B: Environmental, 2019, 257, 117907.	10.8	73
23	On the positive effect of UVC light during the removal of benzothiazoles by photoelectro-Fenton with UVA light. Applied Catalysis B: Environmental, 2019, 259, 118127.	10.8	27
24	Bipolar charge transport in organic electron donorâ€acceptor systems with stable organic radicals as electronâ€withdrawing moieties. Journal of Physical Organic Chemistry, 2019, 32, e3974.	0.9	10
25	Paired electro-oxidation of insecticide imidacloprid and electrodenitrification in simulated and real water matrices. Electrochimica Acta, 2019, 317, 753-765.	2.6	28
26	Groundwater Treatment using a Solid Polymer Electrolyte Cell with Mesh Electrodes. ChemElectroChem, 2019, 6, 1235-1243.	1.7	17
27	Assessment of 4â€Aminoantipyrine Degradation and Mineralization by Photoelectroâ€Fenton with a Boronâ€Doped Diamond Anode: Optimization, Treatment in Municipal Secondary Effluent, and Toxicity. ChemElectroChem, 2019, 6, 865-875.	1.7	6
28	Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Applied Catalysis B: Environmental, 2019, 247, 191-199.	10.8	73
29	Ensuring the overall combustion of herbicide metribuzin by electrochemical advanced oxidation processes. Study of operation variables, kinetics and degradation routes. Separation and Purification Technology, 2019, 211, 637-645.	3.9	29
30	Photoelectro-Fenton as post-treatment for electrocoagulated benzophenone-3-loaded synthetic and urban wastewater. Journal of Cleaner Production, 2019, 208, 1393-1402.	4.6	38
31	Influence of electrolysis conditions on the treatment of herbicide bentazon using artificial UVA radiation and sunlight. Identification of oxidation products. Journal of Environmental Management, 2019, 231, 213-221.	3.8	32
32	Antituberculosis drug isoniazid degraded by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode and a carbon-PTFE air-diffusion cathode. Environmental Science and Pollution Research, 2019, 26, 4415-4425.	2.7	17
33	Photoelectrocatalytic inactivation of Pseudomonas aeruginosa using an Ag-decorated TiO2 photoanode. Separation and Purification Technology, 2019, 208, 83-91.	3.9	32
34	Removal of tyrosol from water by adsorption on carbonaceous materials and electrochemical advanced oxidation processes. Chemosphere, 2018, 201, 807-815.	4.2	35
35	Abatement of the antibiotic levofloxacin in a solar photoelectro-Fenton flow plant: Modeling the dissolved organic carbon concentration-time relationship. Chemosphere, 2018, 198, 174-181.	4.2	62
36	Influence of chelation on the Fenton-based electrochemical degradation of herbicide tebuthiuron. Chemosphere, 2018, 199, 709-717.	4.2	25

#	Article	IF	Citations
37	Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode. Journal of Electroanalytical Chemistry, 2018, 812, 54-58.	1.9	49
38	Treatment of olive oil mill wastewater by single electrocoagulation with different electrodes and sequential electrocoagulation/electrochemical Fenton-based processes. Journal of Hazardous Materials, 2018, 347, 58-66.	6. 5	88
39	IrO2-Ta2O5 Ti electrodes prepared by electrodeposition from different Ir: Ta ratios for the degradation of polycyclic aromatic hydrocarbons. Electrochimica Acta, 2018, 263, 353-361.	2.6	41
40	Degradation of 4-aminoantipyrine by electro-oxidation with a boron-doped diamond anode: Optimization by central composite design, oxidation products and toxicity. Science of the Total Environment, 2018, 631-632, 1079-1088.	3.9	29
41	Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes. Water Research, 2018, 128, 71-81.	5.3	77
42	Solar photoelectro-Fenton treatment of a mixture of parabens spiked into secondary treated wastewater effluent at low input current. Applied Catalysis B: Environmental, 2018, 224, 410-418.	10.8	95
43	Advanced oxidation of real sulfamethoxazoleÂ+ trimethoprim formulations using different anodes and electrolytes. Chemosphere, 2018, 192, 225-233.	4.2	50
44	On-site H2O2 electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants. Journal of Electroanalytical Chemistry, 2018, 808, 364-371.	1.9	53
45	Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions. Chemosphere, 2018, 194, 812-820.	4.2	79
46	Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environmental Chemistry Letters, 2018, 16, 281-286.	8.3	60
47	Microwave-assisted sol-gel synthesis of an Au-TiO2 photoanode for the advanced oxidation of paracetamol as model pharmaceutical pollutant. Electrochemistry Communications, 2018, 96, 42-46.	2.3	38
48	Treatment of cheese whey wastewater by combined electrochemical processes. Journal of Applied Electrochemistry, 2018, 48, 1307-1319.	1.5	44
49	On the performance of electrocatalytic anodes for photoelectro-Fenton treatment of synthetic solutions and real water spiked with the herbicide chloramben. Journal of Environmental Management, 2018, 224, 340-349.	3.8	31
50	Removal of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatment. Science of the Total Environment, 2018, 644, 173-182.	3.9	27
51	Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions. Journal of Applied Electrochemistry, 2018, 48, 1343-1352.	1.5	21
52	Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route. Environmental Science and Pollution Research, 2017, 24, 6071-6082.	2.7	10
53	Treatment of single and mixed pesticide formulations by solar photoelectro-Fenton using a flow plant. Chemical Engineering Journal, 2017, 310, 503-513.	6.6	64
54	Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell. Environmental Science and Pollution Research, 2017, 24, 6083-6095.	2.7	36

#	Article	IF	CITATIONS
55	Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis B: Environmental, 2017, 206, 44-52.	10.8	102
56	Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium. Electrochimica Acta, 2017, 228, 45-56.	2.6	71
57	Effect of electrogenerated hydroxyl radicals, active chlorine and organic matter on the electrochemical inactivation of Pseudomonas aeruginosa using BDD and dimensionally stable anodes. Separation and Purification Technology, 2017, 178, 224-231.	3.9	79
58	Electrochemical oxidation of anesthetic tetracaine in aqueous medium. Influence of the anode and matrix composition. Chemical Engineering Journal, 2017, 326, 811-819.	6.6	37
59	Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters. Electrochimica Acta, 2017, 246, 812-822.	2.6	57
60	Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 2017, 126, 450-459.	5.3	58
61	Twisted intramolecular charge transfer in a carbazole-based chromophore: the stable [(4-N-carbazolyl)-2,3,5,6-tetrachlorophenyl]bis(2,3,5,6-tetrachlorophenyl)methyl radical. New Journal of Chemistry, 2017, 41, 8422-8430.	1.4	10
62	Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Applied Catalysis B: Environmental, 2017, 203, 189-198.	10.8	57
63	Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products. Journal of Electroanalytical Chemistry, 2017, 793, 58-65.	1.9	24
64	4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode. Journal of Hazardous Materials, 2017, 321, 566-575.	6.5	47
65	Preparation of IrO2-Ta2O5 Ti electrodes by immersion, painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water. Journal of Hazardous Materials, 2016, 319, 102-110.	6.5	43
66	Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nanotubes for the electrochemical oxidation of azo dyes. Electrochimica Acta, 2016, 204, 9-17.	2.6	58
67	Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of Reactive Yellow 160 azo dye. Electrochimica Acta, 2016, 206, 307-316.	2.6	72
68	Introduction. Journal of Hazardous Materials, 2016, 319, 1-2.	6.5	3
69	Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chemical Engineering Journal, 2016, 304, 817-825.	6.6	120
70	The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium. Chemosphere, 2016, 163, 516-524.	4.2	41
71	On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochimica Acta, 2016, 222, 1464-1474.	2.6	101
72	Electrocoagulation: Simply a Phase Separation Technology? The Case of Bronopol Compared to Its Treatment by EAOPs. Environmental Science & Eamp; Technology, 2016, 50, 7679-7686.	4.6	53

#	Article	IF	CITATIONS
73	Assessment of IrO 2 -Ta 2 O 5 Ti electrodes for the electrokinetic treatment of hydrocarbon-contaminated soil using different electrode arrays. Electrochimica Acta, 2016, 208, 282-287.	2.6	21
74	Crosslinking of poly(vinylpyrrolidone) activated by electrogenerated hydroxyl radicals: A first step towards a simple and cheap synthetic route of nanogel vectors. Electrochemistry Communications, 2016, 62, 64-68.	2.3	48
75	Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Journal of Hazardous Materials, 2016, 319, 3-12.	6.5	49
76	Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 180, 227-236.	10.8	79
77	Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochimica Acta, 2015, 173, 523-533.	2.6	79
78	Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Research, 2015, 81, 178-187.	5.3	82
79	Electrochemical removal of pharmaceuticals from water streams: Reactivity elucidation by mass spectrometry. TrAC - Trends in Analytical Chemistry, 2015, 70, 112-121.	5.8	72
80	Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 2015, 115, 13362-13407.	23.0	1,273
81	Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes. Journal of Electroanalytical Chemistry, 2015, 757, 225-229.	1.9	56
82	Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. Journal of Hazardous Materials, 2015, 290, 34-42.	6.5	80
83	Decolorization and mineralization of Allura Red AC azo dye by solar photoelectro-Fenton: Identification of intermediates. Chemosphere, 2015, 136, 1-8.	4.2	71
84	Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye. Electrochimica Acta, 2015, 182, 247-256.	2.6	61
85	Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Separation and Purification Technology, 2015, 140, 43-52.	3.9	130
86	Treatment of cellulose bleaching effluents and their filtration permeates by anodic oxidation with <scp>H₂O₂</scp> production. Journal of Chemical Technology and Biotechnology, 2015, 90, 2017-2026.	1.6	18
87	A first preâ€pilot system for the combined treatment of dye pollutants by electrocoagulation/ <scp>EAOPs</scp> . Journal of Chemical Technology and Biotechnology, 2014, 89, 1136-1144.	1.6	21
88	Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 2014, 21, 8336-8367.	2.7	1,521
89	Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes. Environmental Science and Pollution Research, 2014, 21, 8573-8584.	2.7	40
90	Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochimica Acta, 2014, 130, 568-576.	2.6	96

#	Article	IF	Citations
91	Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor. Environmental Science and Pollution Research, 2014, 21, 8485-8492.	2.7	18
92	Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water. Electrochimica Acta, 2014, 132, 15-24.	2.6	42
93	Complete mineralization of the antibiotic amoxicillin by electro-Fenton with a BDD anode. Journal of Applied Electrochemistry, 2014, 44, 1327-1335.	1.5	81
94	Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 2014, 150-151, 116-125.	10.8	137
95	Total removal of alachlor from water by electrochemical processes. Separation and Purification Technology, 2014, 132, 674-683.	3.9	48
96	Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 2014, 109, 49-55.	4.2	64
97	Treatment of a Mixture of Chloromethoxyphenols in Hypochlorite Medium by Electrochemical AOPs as an Alternative for the Remediation of Pulp and Paper Mill Process Waters. Electrocatalysis, 2013, 4, 212-223.	1.5	16
98	Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere, 2013, 91, 1304-1309.	4.2	120
99	Decolorization of Methyl Orange Dye at IrO ₂ â€5nO ₂ â€5b ₂ O ₅ Coated Titanium Anodes. Chemical Engineering and Technology, 2013, 36, 123-129.	0.9	41
100	Electrochemical Treatment of the Antibiotic Sulfachloropyridazine: Kinetics, Reaction Pathways, and Toxicity Evolution. Environmental Science & Enviro	4.6	382
101	Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International, 2012, 40, 212-229.	4.8	835
102	Formation of Sulfonyl Aromatic Alcohols by Electrolysis of a Bisazo Reactive Dye. Molecules, 2012, 17, 14377-14392.	1.7	5
103	Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Applied Catalysis B: Environmental, 2012, 115-116, 107-116.	10.8	174
104	Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 2012, 59, 140-149.	2.6	82
105	Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. Journal of Hazardous Materials, 2011, 192, 1555-1564.	6.5	7 3
106	Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Analytical and Bioanalytical Chemistry, 2011, 400, 353-360.	1.9	108
107	The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta, 2011, 56, 5158-5165.	2.6	87
108	Electrochemical process for the treatment of landfill leachate. Journal of Applied Electrochemistry, 2010, 40, 1721-1727.	1.5	64

#	Article	IF	CITATIONS
109	Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 2010, 81, 594-602.	4.2	225
110	The deposition of nanostructured \hat{i}^2 -PbO2 coatings from aqueous methanesulfonic acid for the electrochemical oxidation of organic pollutants. Electrochemistry Communications, 2010, 12, 70-74.	2.3	77
111	The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions. Electrochimica Acta, 2010, 55, 2163-2172.	2.6	99
112	Use of Both Anode and Cathode Reactions in Wastewater Treatment. , 2010, , 515-552.		5
113	Electrochemical degradation of \hat{l}^2 -blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Research, 2010, 44, 3109-3120.	5 . 3	146
114	UV-C light-enhanced photo-Fenton oxidation of methyl parathion. Environmental Chemistry Letters, 2009, 7, 261-265.	8.3	24
115	Electrochemical study of self-assembled cysteine monolayers on polycrystalline gold electrodes and functionalization with microperoxidase MP-11. Journal of Applied Electrochemistry, 2009, 39, 2275-2284.	1.5	9
116	Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes. Journal of Electroanalytical Chemistry, 2009, 627, 41-50.	1.9	148
117	Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry. Chemical Reviews, 2009, 109, 6570-6631.	23.0	2,755
118	Decontamination of Aqueous Glyphosate, (Aminomethyl)phosphonic Acid, and Glufosinate Solutions by Electro-Fenton-like Process with Mn ²⁺ as the Catalyst. Journal of Agricultural and Food Chemistry, 2009, 57, 4888-4894.	2.4	89
119	Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes. Journal of Electroanalytical Chemistry, 2008, 613, 151-159.	1.9	160
120	Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochimica Acta, 2008, 54, 173-182.	2.6	165
121	Anodic oxidation of mecoprop herbicide at lead dioxide. Journal of Applied Electrochemistry, 2008, 38, 923-929.	1.5	55
122	Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Journal of Electroanalytical Chemistry, 2008, 624, 329-332.	1.9	126
123	Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode. Chemosphere, 2008, 72, 592-600.	4.2	124
124	Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere, 2007, 66, 1660-1669.	4.2	140
125	Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Applied Catalysis B: Environmental, 2007, 72, 382-394.	10.8	356
126	Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Applied Catalysis B: Environmental, 2007, 72, 373-381.	10.8	125

#	ARTICLE	IF	CITATION
127	Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochimica Acta, 2007, 52, 5493-5503.	2.6	219
128	Electrochemical degradation of clofibric acid in water by anodic oxidation. Electrochimica Acta, 2006, 52, 75-85.	2.6	144
129	Electrochemical Degradation of Paracetamol from Water by Catalytic Action of Fe[sup 2+], Cu[sup 2+], and UVA Light on Electrogenerated Hydrogen Peroxide. Journal of the Electrochemical Society, 2006, 153, D1.	1.3	162
130	Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton. Environmental Chemistry Letters, 2005, 3, 7-11.	8.3	64
131	Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere, 2005, 58, 399-406.	4.2	293
132	Paracetamol Mineralization by Advanced Electrochemical Oxidation Processes for Wastewater Treatment. Environmental Chemistry, 2004, 1, 26.	0.7	35
133	Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 2004, 49, 4487-4496.	2.6	383