

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2429097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica) Tj ETQq1	1 0.784314 12.4	1 rgBT /Ovei
2	Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology, 2017, 11, 699-709.	3.0	107
3	Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques. Chemosphere, 2016, 155, 225-233.	8.2	83
4	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
5	Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 2014, 164, 35-48.	3.3	61
6	The oxidation and sorption mechanism of Sb on δ-MnO 2. Chemical Engineering Journal, 2018, 342, 429-437.	12.7	61
7	Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils. Nature Communications, 2019, 10, 3775.	12.8	57
8	The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environmental Science: Nano, 2017, 4, 919-928.	4.3	55
9	Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. Journal of Hazardous Materials, 2016, 308, 21-28.	12.4	43
10	Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology, 2019, 53, 3802-3810.	10.0	42
11	Transfer and toxicity of silver nanoparticles in the food chain. Environmental Science: Nano, 2021, 8, 1519-1535.	4.3	32
12	Alteration of Crop Yield and Quality of Three Vegetables upon Exposure to Silver Nanoparticles in Sludge-Amended Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 2472-2480.	6.7	31
13	Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica. Environmental Pollution, 2017, 222, 50-57.	7.5	27
14	Nonselective uptake of silver and gold nanoparticles by wheat. Nanotoxicology, 2019, 13, 1073-1086.	3.0	27
15	Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi. Journal of Hazardous Materials, 2015, 292, 44-51.	12.4	26
16	Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicology, 2020, 14, 654-666.	3.0	26
17	Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles. Environmental Science: Nano, 2018, 5, 969-979.	4.3	24
18	High retention of silver sulfide nanoparticles in natural soils. Journal of Hazardous Materials, 2019, 378, 120735.	12.4	23

MINL

Min Li

#	Article	IF	CITATIONS
19	Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties. Journal of Soils and Sediments, 2018, 18, 2491-2499.	3.0	17
20	Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Environmental Pollution, 2018, 243, 364-373.	7.5	17
21	Heteroaggregation and dissolution of silver nanoparticles by iron oxide colloids under environmentally relevant conditions. Environmental Science: Nano, 2019, 6, 195-206.	4.3	16
22	Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice. Environmental Pollution, 2020, 260, 113969.	7.5	15
23	Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil. Environmental Pollution, 2022, 300, 118954.	7.5	14
24	Mercury methylation from mercury selenide particles in soils. Journal of Hazardous Materials, 2020, 400, 123248.	12.4	9
25	Effects of lowâ€molecularâ€weight organic acids on the acute lethality, accumulation, and enzyme activity of cadmium in <i>Eisenia fetida</i> in a simulated soil solution. Environmental Toxicology and Chemistry, 2017, 36, 1005-1011.	4.3	8
26	Copper pre-exposure reduces AgNP bioavailability to wheat. Science of the Total Environment, 2020, 707, 136084.	8.0	3
27	Greater Bioaccessibility of Silver Nanoparticles in Earthworm than in Soils. Bulletin of Environmental Contamination and Toxicology, 2022, , 1.	2.7	Ο