Takeyuki Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2428002/publications.pdf

Version: 2024-02-01

1307594 996975 24 296 7 15 citations g-index h-index papers 24 24 24 255 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Study on the Effects of Different Cutting Angles on the End-Milling of Wire and Arc Additive Manufacturing Inconel 718 Workpieces. Materials, 2022, 15, 2190.	2.9	O
2	Material property control for CuSn alloy by using wire and arc additive manufacturing. Transactions of the JSME (in Japanese), 2022, 88, .	0.2	O
3	Simulating the build shape for a shell structure for wire and arc additive manufacturing using the bead cross-section model. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2021, 15, JAMDSM0001-JAMDSM0001.	0.7	0
4	Suppression of anisotropy by wire and arc additive manufacturing with finishing process. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2021, 15, JAMDSM0066-JAMDSM0066.	0.7	1
5	Thermal sensing and heat input control for thin-walled structure building based on numerical simulation for wire and arc additive manufacturing. Additive Manufacturing, 2020, 35, 101357.	3.0	17
6	Development of Scanning Line Tool Path Generation Algorithm Using Boundary Position Information of Approximate Polyhedron of Complex Molds. International Journal of Automation Technology, 2020, 14, 491-499.	1.0	1
7	Development of Tool Shape Estimation Method Integrating Multidirectional Optical Measurement. International Journal of Automation Technology, 2020, 14, 512-520.	1.0	O
8	Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing. Additive Manufacturing, 2019, 28, 639-648.	3.0	39
9	Fast Tool Path Generation Algorithm for Large-Scale Discrete Shape. Journal of the Japan Society for Precision Engineering, 2019, 85, 597-604.	0.1	O
10	Control of the chemical composition distribution in deposited metal by wire and arc-based additive manufacturing. Precision Engineering, 2019, 55, 231-239.	3.4	25
11	Accurate Tool Path Generation Method for Large-Scale Discrete Shapes. International Journal of Automation Technology, 2019, 13, 279-288.	1.0	2
12	Developing a Support System for Loading Planning. International Journal of Automation Technology, 2019, 13, 475-481.	1.0	3
13	Effect of bonding conditions on the bonding strength in an aluminum bonding using ultrasonic vibrations and high-frequency induction heating in an atmosphere. Welding International, 2018, 32, 535-541.	0.7	1
14	Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Additive Manufacturing, 2018, 24, 498-507.	3.0	45
15	Study on Wire and Arc-based Additive Manufacturing. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2017, 86, 500-504.	0.1	0
16	Development of the shell structure building simulator with two-dimensional bead model for wire and arc-based additive manufacturing. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2017, 2017.9, 016.	0.0	0
17	Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing. Precision Engineering, 2016, 45, 387-395.	3.4	122
18	Development of the shell structures fabrication CAM system for direct metal lamination using arc discharge-lamination height error compensation by torch feed speed control International Journal of Precision Engineering and Manufacturing, 2015, 16, 171-176.	2.2	16

#	Article	IF	CITATIONS
19	C43 Development of the direct metal lamination system by using arc discharge: Fabrication with dissimilar metal. The Proceedings of the Manufacturing & Machine Tool Conference, 2014, 2014.10, 199-200.	0.0	O
20	Strength of Manufactured Object Made by Direct Metal Lamination Using Arc Discharge. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2013, 79, 1168-1178.	0.2	5
21	Influence of the Cooling Method of the Molten Pool on the Laminating Characteristics in Direct Metal Lamination by Using Arc Discharge. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2012, 78, 282-291.	0.2	6
22	Residual Stress and Deformation After Finishing of a Shell Structure Fabricated by Direct Metal Lamination Using Arc Discharge. International Journal of Automation Technology, 2012, 6, 611-617.	1.0	7
23	3274 Residual Stress and Deformation of Shell Structure Fabricated by Direct Metal Lamination Using Arc Discharge. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2011, 2011.6, _3274-13274-4	0.0	1
24	Mechanical Properties Evaluation of Metal Components Repaired by Direct Metal Lamination. Key Engineering Materials, 0, 656-657, 440-445.	0.4	5