
Yasutaka Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2427960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical and Biological Features of Neuroendocrine Prostate Cancer. Current Oncology Reports, 2021, 23, 15.	4.0	99
2	Regulation of antitumor miRâ€144â€5p targets oncogenes: Direct regulation of syndecanâ€3 and its clinical significance. Cancer Science, 2018, 109, 2919-2936.	3.9	98
3	Regulation of <i><scp>NCAPG</scp></i> by <i>miRâ€99aâ€3p</i> (passenger strand) inhibits cancer cell aggressiveness and is involved in <scp>CRPC</scp> . Cancer Medicine, 2018, 7, 1988-2002.	2.8	67
4	Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. Journal of Human Genetics, 2018, 63, 195-205.	2.3	54
5	RNAâ€sequenceâ€based microRNA expression signature in breast cancer: tumorâ€suppressive <i>miRâ€101â€5p regulates molecular pathogenesis. Molecular Oncology, 2020, 14, 426-446.</i>	4.6	52
6	Dual Strands of Pre-miR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma. International Journal of Molecular Sciences, 2017, 18, 1969.	4.1	51
7	The treatment landscape of metastatic prostate cancer. Cancer Letters, 2021, 519, 20-29.	7.2	50
8	Involvement of Dual Strands of miR-143 (miR-143-5p and miR-143-3p) and Their Target Oncogenes in the Molecular Pathogenesis of Lung Adenocarcinoma. International Journal of Molecular Sciences, 2019, 20, 4482.	4.1	48
9	Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. Journal of Human Genetics, 2018, 63, 657-668.	2.3	42
10	Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma. International Journal of Oncology, 2018, 52, 166-178.	3.3	41
11	Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. Journal of Human Genetics, 2018, 63, 1197-1210.	2.3	41
12	Impact of novel oncogenic pathways regulated by antitumor <i>miRâ€451a</i> in renal cell carcinoma. Cancer Science, 2018, 109, 1239-1253.	3.9	39
13	Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers, 2019, 11, 601.	3.7	39
14	Expression of L-type amino acid transporter 1 as a molecular target for prognostic and therapeutic indicators in bladder carcinoma. Scientific Reports, 2020, 10, 1292.	3.3	35
15	Involvement of anti-tumor <i>miR-124-3p</i> and its targets in the pathogenesis of pancreatic ductal adenocarcinoma: direct regulation of <i>ITGA3</i> and <i>ITGB1</i> by <i>miR-124-3p</i> . Oncotarget, 2018, 9, 28849-28865.	1.8	35
16	Molecular pathogenesis of renal cell carcinoma: Impact of the antiâ€ŧumor <i>miRâ€29</i> family on gene regulation. International Journal of Urology, 2018, 25, 953-965.	1.0	33
17	Regulation of Oncogenic Targets by miR-99a-3p (Passenger Strand of miR-99a-Duplex) in Head and Neck Squamous Cell Carcinoma. Cells, 2019, 8, 1535.	4.1	32
18	Dual strands of the miR-145 duplex (miR-145-5p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis. Journal of Human Genetics, 2018, 63, 1015-1028.	2.3	30

Yasutaka Yamada

#	Article	IF	CITATIONS
19	Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8. Journal of Human Genetics, 2019, 64, 521-534.	2.3	29
20	Involvement of dualâ€strand of the <i>miRâ€144</i> duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Science, 2019, 110, 420-432.	3.9	29
21	Aberrantly expressed <scp>PLOD</scp> 1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target. Molecular Oncology, 2019, 13, 1898-1912.	4.6	28
22	Pirin: a potential novel therapeutic target for castrationâ€resistant prostate cancer regulated by miRâ€455â€5p. Molecular Oncology, 2019, 13, 322-337.	4.6	27
23	Inhibition of integrin β1-mediated oncogenic signalling by the antitumor <i>microRNA-29</i> family in head and neck squamous cell carcinoma. Oncotarget, 2018, 9, 3663-3676.	1.8	26
24	Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers, 2019, 11, 258.	3.7	24
25	Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation. Cancers, 2019, 11, 327.	3.7	24
26	Anti-tumor roles of both strands of the <i>miR-455</i> duplex: their targets <i>SKA1</i> and <i>SKA3</i> are involved in the pathogenesis of renal cell carcinoma. Oncotarget, 2018, 9, 26638-26658.	1.8	22
27	Replisome genes regulation by antitumor <i>miRâ€101â€5p</i> in clear cell renal cell carcinoma. Cancer Science, 2020, 111, 1392-1406.	3.9	22
28	Molecular pathogenesis of esophageal squamous cell carcinoma: Identification of the antitumor effects of miR‑145‑3p on gene regulation. International Journal of Oncology, 2019, 54, 673-688.	3.3	20
29	Higher Serum Testosterone Levels Associated with Favorable Prognosis in Enzalutamide- and Abiraterone-Treated Castration-Resistant Prostate Cancer. Journal of Clinical Medicine, 2019, 8, 489.	2.4	20
30	Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer. Journal of Human Genetics, 2020, 65, 647-656.	2.3	19
31	Functional analysis of LAT3 in prostate cancer: Its downstream target and relationship with androgen receptor. Cancer Science, 2021, 112, 3871-3883.	3.9	19
32	Regulation of Oncogenic Targets by the Tumor-Suppressive miR-139 Duplex (miR-139-5p and miR-139-3p) in Renal Cell Carcinoma. Biomedicines, 2020, 8, 599.	3.2	15
33	Prognostic value of an inflammatory index for patients with metastatic castrationâ€resistant prostate cancer. Prostate, 2020, 80, 559-569.	2.3	14
34	Biparametric Prostate Imaging Reporting and Data System version2 and International Society of Urological Pathology Grade Predict Biochemical Recurrence after RadicalÂProstatectomy. Clinical Genitourinary Cancer, 2018, 16, e817-e829.	1.9	10
35	Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy. Asian Journal of Andrology, 2018, 20, 432.	1.6	10
36	Role of pre- (and) in regulation of gene expression and molecular pathogenesis in renal cell carcinoma. American Journal of Clinical and Experimental Urology, 2019, 7, 11-30.	0.4	10

Yasutaka Yamada

#	Article	IF	CITATIONS
37	How many bone metastases may be defined as highâ€volume metastatic prostate cancer in Asians: A retrospective multicenter cohort study. Prostate, 2020, 80, 432-440.	2.3	8
38	Treatment of locally advanced prostate cancer (Stage T3). Japanese Journal of Clinical Oncology, 2017, 47, 257-261.	1.3	6
39	Case of bilateral and multifocal renal cell carcinoma associated with <scp>B</scp> irt– <scp>H</scp> ogg– <scp>D</scp> ubé syndrome. International Journal of Urology, 2015, 22, 230-231.	1.0	5
40	Significant prognostic difference between Grade Group 4 and 5 in the 2014 International Society of Urological Pathology Grading System for High Grade Prostate Cancer with Bone Metastasis. Prostate International, 2017, 5, 143-148.	2.3	5
41	Revision of CHAARTED and LATITUDE criteria among Japanese de novo metastatic prostate cancer patients. Prostate International, 2021, 9, 208-214.	2.3	5
42	Prognostic factors influencing overall survival in de novo oligometastatic prostate cancer patients. Prostate, 2020, 80, 850-858.	2.3	4
43	Outcomes of patients older than 75 years with non-metastatic prostate cancer. Asian Journal of Urology, 2017, 4, 102-106.	1.2	3
44	Revision of CHAARTED and LATTITUDE criteria among Japanese de novo metastatic prostate cancer patients Journal of Clinical Oncology, 2020, 38, 132-132.	1.6	0
45	Prognostic value of novel inflammation index for patients with metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2020, 38, 212-212.	1.6	0
46	Lymph node metastasis to predict overall survival in oligometastatic prostate cancer in Asian patients Journal of Clinical Oncology, 2020, 38, 237-237.	1.6	0