Luca Marmo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2427169/publications.pdf

Version: 2024-02-01

31 papers	767	16 h-index	526287 27 g-index
papero		II III OX	5 maon
35 all docs	35 docs citations	35 times ranked	636 citing authors

#	Article	IF	CITATIONS
1	On the flammable behavior of non-traditional dusts: Dimensionless numbers evaluation for nylon 6,6 short fibers. Journal of Loss Prevention in the Process Industries, 2022, 78, 104815.	3.3	6
2	FLAME: A Parametric Fire Risk Assessment Method Supporting Performance Based Approaches. Fire Technology, 2021, 57, 721-765.	3.0	9
3	The explosion of non-nano iron dust suspension in the 20-l spherical bomb. Journal of Loss Prevention in the Process Industries, 2021, 71, 104447.	3.3	4
4	Effect of particle size distribution, drying and milling technique on explosibility behavior of olive pomace waste. Journal of Loss Prevention in the Process Industries, 2021, 71, 104423.	3.3	8
5	Rational engineering of the $lccl^2$ T. versicolor laccase for the mediator-less oxidation of large polycyclic aromatic hydrocarbons. Computational and Structural Biotechnology Journal, 2021, 19, 2213-2222.	4.1	16
6	PHA Production from Cheese Whey and "Scotta― Comparison between a Consortium and a Pure Culture of Leuconostoc mesenteroides. Microorganisms, 2021, 9, 2426.	3.6	14
7	Energy Recovery from Vinery Waste: Dust Explosion Issues. Applied Sciences (Switzerland), 2021, 11, 11188.	2.5	6
8	Dust explosion hazard in the textile industry. Journal of Loss Prevention in the Process Industries, 2019, 62, 103935.	3.3	15
9	Dust explosion risk in metal workings. Journal of Loss Prevention in the Process Industries, 2019, 61, 195-205.	3.3	18
10	CFD simulation of turbulent flow field, feeding and dispersion of non-spherical dust particles in the standard 20†L sphere. Journal of Loss Prevention in the Process Industries, 2019, 62, 103983.	3.3	16
11	Major accident hazard in biodiesel production processes. Safety Science, 2019, 113, 490-503.	4.9	15
12	Study of the explosible properties of textile dusts. Journal of Loss Prevention in the Process Industries, 2018, 54, 110-122.	3.3	20
13	A statistical approach to determine the autoignition temperature of dust clouds. Journal of Loss Prevention in the Process Industries, 2018, 56, 181-190.	3.3	9
14	Explosibility of metallic waste dusts. Chemical Engineering Research and Design, 2017, 107, 69-80.	5.6	29
15	Small magnitude explosion of aluminium powder in an abatement plant: A telling case. Chemical Engineering Research and Design, 2015, 98, 221-230.	5.6	23
16	Minimum Ignition Temperature of layer and cloud dust mixtures. Journal of Loss Prevention in the Process Industries, 2015, 36, 326-334.	3.3	52
17	Explosibility of polyamide and polyester fibers. Journal of Loss Prevention in the Process Industries, 2013, 26, 1627-1633.	3.3	21
18	Multiple Tank Explosions in an Edible-Oil Refinery Plant: A Case Study. Chemical Engineering and Technology, 2013, 36, 1131-1137.	1.5	8

#	Article	IF	CITATIONS
19	Missing safety measures led to the jet fire and seven deaths at a steel plant in Turin. Dynamics and lessons learned. Journal of Loss Prevention in the Process Industries, 2013, 26, 215-224.	3.3	12
20	Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydrate Polymers, 2013, 94, 372-377.	10.2	157
21	Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine. Biosensors, 2013, 3, 385-399.	4.7	20
22	Case study of a nylon fibre explosion: An example of explosion risk in a textile plant. Journal of Loss Prevention in the Process Industries, 2010, 23, 106-111.	3.3	33
23	Recursive Operability Analysis as a decision support tool for Risk-Based Maintenance. Journal of Loss Prevention in the Process Industries, 2009, 22, 557-565.	3.3	8
24	A critical comparison of frictional stress models applied to the simulation of bubbling fluidized beds. Chemical Engineering Science, 2009, 64, 2795-2806.	3.8	78
25	Minimum ignition energy of nylon fibres. Journal of Loss Prevention in the Process Industries, 2008, 21, 512-517.	3.3	25
26	A model for the pressure balance of a low density circulating fluidized bed. Chemical Engineering Journal, 2008, 140, 414-423.	12.7	8
27	Low temperature drying of pomace in spout and spout-fluid beds. Journal of Food Engineering, 2007, 79, 1179-1190.	5. 2	37
28	Predicting the pressure drop across the solids flow rate control device of a circulating fluidized bed. Powder Technology, 2006, 161, 89-97.	4.2	21
29	Aluminium dust explosion risk analysis in metal workings. Journal of Loss Prevention in the Process Industries, 2004, 17, 449-465.	3.3	54
30	Two Aluminum Powder Explosions, that Occurred in Superficial Finishing Plants., 2004,, 3402-3407.		3
31	Recursive operability analysis of a complex plant with multiple protection devices. Reliability Engineering and System Safety, 2002, 77, 301-308.	8.9	18