Lei Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2427083/publications.pdf

Version: 2024-02-01

516710 552781 28 694 16 26 citations h-index g-index papers 28 28 28 1461 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3667-3676.	8.0	98
2	Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25770-25776.	8.0	58
3	Fast and Controllable Crystallization of Perovskite Films by Microwave Irradiation Process. ACS Applied Materials & Emp; Interfaces, 2016, 8, 7854-7861.	8.0	58
4	Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO ₂ Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials, 2016, 28, 7134-7144.	6.7	50
5	Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO ₂ Electron Extraction Layer. ACS Applied Materials & Diterfaces, 2017, 9, 2016-2022.	8.0	47
6	Smart windows – Transmittance tuned thermochromic coatings for dynamic control of building performance. Energy and Buildings, 2021, 235, 110717.	6.7	40
7	An Effective TiO2 Blocking Layer for Perovskite Solar Cells with Enhanced Performance. Chemistry Letters, 2015, 44, 624-626.	1.3	37
8	Cyclic Utilization of Lead in Carbon-Based Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 7558-7564.	6.7	30
9	Minimizing the energy loss of perovskite solar cells with Cu+ doped NiOx processed at room temperature. Solar Energy Materials and Solar Cells, 2018, 182, 128-135.	6.2	28
10	Study on the correlations between the structure and photoelectric properties of CH3NH3Pbl3 perovskite light-harvesting material. Journal of Power Sources, 2015, 285, 349-353.	7.8	27
11	Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance. Nanoscale, 2017, 9, 2569-2578.	5.6	27
12	Fast Fabrication of a Stable Perovskite Solar Cell with an Ultrathin Effective Novel Inorganic Hole Transport Layer. Langmuir, 2017, 33, 3624-3634.	3.5	22
13	Controllable deposition of TiO 2 nanopillars at room temperature for high performance perovskite solar cells with suppressed hysteresis. Solar Energy Materials and Solar Cells, 2017, 168, 172-182.	6.2	18
14	Influence of TiO ₂ Blocking Layer Morphology on Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 2016, 45, 592-594.	1.3	17
15	Enhanced electrical property of Ni-doped CoO _x hole transport layer for inverted perovskite solar cells. Nanotechnology, 2017, 28, 20LTO2.	2.6	17
16	Supramolecular Proton Conductors Self-Assembled by Organic Cages. Jacs Au, 2022, 2, 819-826.	7.9	17
17	One step spray-coated TiO ₂ electron-transport layers for decent perovskite solar cells on large and flexible substrates. Nanotechnology, 2017, 28, 01LT02.	2.6	16
18	Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. Journal of Materials Chemistry A, 2019, 7, 21085-21095.	10.3	16

#	Article	IF	CITATIONS
19	Room-temperature processible TiO2 electron selective layers with controllable crystallinity for high efficiency perovskite photovoltaics. Solar Energy Materials and Solar Cells, 2017, 163, 15-22.	6.2	14
20	Influence of hole transport material/metal contact interface on perovskite solar cells. Nanotechnology, 2018, 29, 255201.	2.6	13
21	Effect of Br content on phase stability and performance of H ₂ N=CHNH ₂ Pb(l _{1â^'<i>x</i>} Br <i>_x </i>) ₃ perovskite thin films. Nanotechnology, 2019, 30, 165402.	2.6	11
22	Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23624-23634.	8.0	8
23	Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 2020, 32, 5958-5972.	6.7	8
24	Effect of Annealing Temperature on Film Morphology of Planar Heterojunction Mixed Halide Perovskite CH3NH3Pbl3â~' <i>x</i> Cl <i>x</i> Solar Cells Based on Compact ZnO. Chemistry Letters, 2015, 44, 1022-1024.	1.3	7
25	Mesostructured perovskite solar cells based on highly ordered TiO ₂ network scaffold via anodization of Ti thin film. Nanotechnology, 2017, 28, 055403.	2.6	7
26	Dense Core–Mesoporous Outer Layer Scattering Beads for Dye-sensitized Solar Cells. Chemistry Letters, 2014, 43, 1896-1898.	1.3	2
27	Effects of Surface Tension Driven Convection Upon Crystal Growth of KTa _{1â€x} Nb _x O ₃ . Crystal Research and Technology, 2017, 52, 1700161.	1.3	1
28	Novel Post-Treatment Process by La ³⁺ Modification to TiO ₂ Photoanode with Enhanced Performance for DSSCs. Advanced Materials Research, 0, 860-863, 219-222.	0.3	0