Markus Schmid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2427076/publications.pdf Version: 2024-02-01

MADKIIS SCHMID

#	Article	IF	CITATIONS
1	Impaired KIN10 function restores developmental defects in the <i>Arabidopsis trehalose 6â€phosphate synthase1 (tps1)</i> mutant. New Phytologist, 2022, 235, 220-233.	3.5	26
2	FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology, 2022, 32, 2988-2996.e4.	1.8	24
3	miRNA Mediated Regulation and Interaction between Plants and Pathogens. International Journal of Molecular Sciences, 2021, 22, 2913.	1.8	36
4	Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges. Journal of Experimental Botany, 2021, , .	2.4	9
5	Insights into the role of alternative splicing in plant temperature response. Journal of Experimental Botany, 2021, , .	2.4	17
6	Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
7	The trehalose 6â€phosphate pathway impacts vegetative phase change in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 104, 768-780.	2.8	45
8	A gibberellin methyltransferase modulates the timing of floral transition at the Arabidopsis shoot meristem. Physiologia Plantarum, 2020, 170, 474-487.	2.6	4
9	Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist, 2020, 226, 1753-1765.	3.5	33
10	TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem. Plant Physiology, 2020, 182, 2081-2095.	2.3	61
11	CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS ONE, 2019, 14, e0222778.	1.1	75
12	Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. Plant Cell, 2019, 31, 325-345.	3.1	30
13	FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. Plant Physiology, 2019, 180, 367-380.	2.3	115
14	A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods, 2019, 15, 126.	1.9	13
15	Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. ELife, 2018, 7, .	2.8	32
16	Role of <i>BASIC PENTACYSTEINE</i> transcription factors in a subset of cytokinin signaling responses. Plant Journal, 2018, 95, 458-473.	2.8	52
17	PORCUPINE regulates development in response to temperature through alternative splicing. Nature Plants, 2018, 4, 534-539.	4.7	56
18	WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics, 2018, 14, e1007177.	1.5	56

MARKUS SCHMID

#	Article	IF	CITATIONS
19	Editorial overview: Growth and development: Change is in the air: how plants modulate development in response to the environment. Current Opinion in Plant Biology, 2017, 35, iv-vi.	3.5	1
20	A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants, 2017, 3, 17053.	4.7	434
21	Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nature Communications, 2017, 8, 15120.	5.8	96
22	Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68, 5117-5127.	2.4	94
23	Dynamics of H3K4me3 Chromatin Marks Prevails over H3K27me3 for Gene Regulation during Flower Morphogenesis in Arabidopsis thaliana. Epigenomes, 2017, 1, 8.	0.8	36
24	A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nature Communications, 2016, 7, 11222.	5.8	76
25	Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. ELife, 2016, 5, .	2.8	158
26	Gibberellic acid signaling is required for ambient temperatureâ€mediated induction of flowering in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 84, 949-962.	2.8	59
27	Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genetics, 2015, 11, e1005588.	1.5	103
28	Profiling of embryonic nuclear vs. cellular RNA in Arabidopsis thaliana. Genomics Data, 2015, 4, 96-98.	1.3	15
29	Role of alternative pre-mRNA splicing in temperature signaling. Current Opinion in Plant Biology, 2015, 27, 97-103.	3.5	84
30	Control of flowering by ambient temperature. Journal of Experimental Botany, 2015, 66, 59-69.	2.4	173
31	A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network. PLoS ONE, 2015, 10, e0116973.	1.1	40
32	Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite Â. Plant Physiology, 2014, 164, 384-399.	2.3	151
33	Cell type-specific transcriptome analysis in the early <i>Arabidopsis thaliana</i> embryo. Development (Cambridge), 2014, 141, 4831-4840.	1.2	69
34	Regulation of Flowering by Endogenous Signals. Advances in Botanical Research, 2014, , 63-102.	0.5	11
35	Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science, 2013, 342, 628-632.	6.0	307
36	Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature, 2013, 503, 414-417.	13.7	409

MARKUS SCHMID

#	Article	IF	CITATIONS
37	Regulation of Flowering by Trehalose-6-Phosphate Signaling in <i>Arabidopsis thaliana</i> . Science, 2013, 339, 704-707.	6.0	571
38	Gibberellin Regulates the <i>Arabidopsis</i> Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. Plant Cell, 2012, 24, 3320-3332.	3.1	377
39	The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development (Cambridge), 2012, 139, 1978-1986.	1.2	87
40	Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators Â. Plant Physiology, 2012, 160, 433-449.	2.3	169
41	Spatial control of flowering by DELLA proteins in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2012, 139, 4072-4082.	1.2	154
42	The end of innocence: flowering networks explode in complexity. Current Opinion in Plant Biology, 2012, 15, 45-50.	3.5	93
43	Syntenyâ€based mappingâ€byâ€sequencing enabled by targeted enrichment. Plant Journal, 2012, 71, 517-526.	2.8	43
44	Genomeâ€wide bindingâ€site analysis of REVOLUTA reveals a link between leaf patterning and lightâ€mediated growth responses. Plant Journal, 2012, 72, 31-42.	2.8	120
45	The control of developmental phase transitions in plants. Development (Cambridge), 2011, 138, 4117-4129.	1.2	540
46	Trehalose-6-Phosphate: Connecting Plant Metabolism and Development. Frontiers in Plant Science, 2011, 2, 70.	1.7	221
47	Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 2011, 68, 2013-2037.	2.4	774
48	Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the <i>Arabidopsis</i> LEAFY Transcription Factor Â. Plant Cell, 2011, 23, 1293-1306.	3.1	148
49	The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biology, 2010, 10, 285.	1.6	80
50	Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant Journal, 2010, 62, 807-816.	2.8	95
51	MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, 464, 913-916.	13.7	532
52	Orchestration of the Floral Transition and Floral Development in <i>Arabidopsis</i> by the Bifunctional Transcription Factor APETALA2 Â. Plant Cell, 2010, 22, 2156-2170.	3.1	427
53	Repression of Flowering by the miR172 Target SMZ. PLoS Biology, 2009, 7, e1000148.	2.6	382
54	Just say no: floral repressors help Arabidopsis bide the time. Current Opinion in Plant Biology, 2009, 12, 580-586.	3.5	68

MARKUS SCHMID

#	Article	IF	CITATIONS
55	Auxin Responses in Mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 Signalosome Â. Plant Physiology, 2008, 147, 1369-1379.	2.3	45
56	KDELâ€ŧailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. American Journal of Botany, 2008, 95, 1049-1062.	0.8	66
57	The <i>Arabidopsis</i> COP9 signalosome is essential for G2 phase progression and genomic stability. Development (Cambridge), 2008, 135, 2013-2022.	1.2	79
58	Distinct Expression Patterns of Natural Antisense Transcripts in Arabidopsis. Plant Physiology, 2007, 144, 1247-1255.	2.3	84
59	Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 2007, 17, 1055-1060.	1.8	554
60	A gene expression map of Arabidopsis thaliana development. Nature Genetics, 2005, 37, 501-506.	9.4	2,293
61	Diversity of Flowering Responses in Wild Arabidopsis thaliana Strains. PLoS Genetics, 2005, 1, e6.	1.5	303
62	Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 2005, 8, 517-527.	3.1	1,345
63	Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309, 1056-1059.	6.0	1,230
64	Dissection of floral induction pathways using global expression analysis. Development (Cambridge), 2003, 130, 6001-6012.	1.2	418
65	Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 2003, 301, 653-657.	6.0	4,667
66	AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9626-9631.	3.3	103
67	Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Die Naturwissenschaften, 2001, 88, 49-58.	0.6	68
68	The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5353-5358.	3.3	98
69	Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14159-14164.	3.3	146
70	A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta, 1998, 206, 466-475.	1.6	100
71	The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Plant Journal, 1998, 16, 453-464.	2.8	52