Hui Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426311/publications.pdf

Version: 2024-02-01

623734 642732 23 633 14 23 citations h-index g-index papers 23 23 23 1096 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	The Role of miR-129-5p in Cancer: A Novel Therapeutic Target. Current Molecular Pharmacology, 2022, 15, 647-657.	1.5	5
2	The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clinica Chimica Acta, 2021, 517, 92-98.	1.1	24
3	IncRNAs as Hallmarks for Individualized Treatment of Gastric Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, .	1.7	1
4	Gastrokine 2 Regulates the Antitumor Effect of JAK2/STAT3 Pathway in Gastric Cancer. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-9.	1,2	2
5	Knockdown of RhoGDI2 represses human gastric cancer cell proliferation, invasion and drug resistance via the Rac1/Pak1/LIMK1 pathway. Cancer Letters, 2020, 492, 136-146.	7.2	15
6	Function and mechanisms of microRNA‑20a in colorectal cancer (Review). Experimental and Therapeutic Medicine, 2020, 19, 1605-1616.	1.8	20
7	Diallyl disulfide induces downregulation and inactivation of cofilini¿½1 differentiation via the Rac1/ROCK1/LIMK1 pathway in leukemia cells. International Journal of Oncology, 2020, 56, 772-782.	3.3	9
8	BCL10 in cell survival after DNA damage. Clinica Chimica Acta, 2019, 495, 301-308.	1.1	7
9	RORα Suppresses Epithelial-to-Mesenchymal Transition and Invasion in Human Gastric Cancer Cells via the Wnt/β-Catenin Pathway. Frontiers in Oncology, 2019, 9, 1344.	2.8	11
10	Autophagy and its role in gastric cancer. Clinica Chimica Acta, 2019, 489, 10-20.	1.1	119
11	Signalling mechanism(s) of epithelial–mesenchymal transition and cancer stem cells in tumour therapeutic resistance. Clinica Chimica Acta, 2018, 483, 156-163.	1.1	63
12	Diallyl disulfide inhibits TGFâ€Î²1â€ʻinduced upregulation of Rac1 and βâ€ʻcatenin in epithelialâ€ʻmesenchymal transition and tumor growth of gastric cancer. Oncology Reports, 2018, 39, 2797-2806.	2.6	11
13	Identification of potential targets for differentiation in human leukemia cells induced by diallyl disulfide. International Journal of Oncology, 2017, 50, 697-707.	3.3	16
14	Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer. Oncotarget, 2016, 7, 10498-10512.	1.8	51
15	Identification of potential targets for diallyl disulfide in human gastric cancer MGC-803 cells using proteomics approaches. Oncology Reports, 2015, 33, 2484-2494.	2.6	19
16	Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clinica Chimica Acta, 2015, 450, 127-134.	1.1	39
17	Inhibition of the JAK2/STAT3 Pathway Reduces Gastric Cancer Growth In Vitro and In Vivo. PLoS ONE, 2014, 9, e95993.	2.5	77
18	Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells. Food and Chemical Toxicology, 2014, 68, 61-70.	3.6	19

Hui Ling

#	Article	IF	CITATION
19	Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line. Oncology Reports, 2014, 32, 2274-2282.	2.6	15
20	Interference of Chkl/2 by RNA Regulates G2/M Arrest and Expressions of Cell Cycle Related Proteins Induced by Diallyl Disulfide*. Progress in Biochemistry and Biophysics, 2010, 37, 184-189.	0.3	1
21	Inhibition of ERK and activation of p38 are involved in diallyl disulfide induced apoptosis of leukemia HL-60 cells. Archives of Pharmacal Research, 2008, 31, 786-793.	6.3	28
22	Erk is involved in the differentiation induced by diallyl disulfide in the human gastric cancer cell line MGC803. Cellular and Molecular Biology Letters, 2006, 11 , 408-23.	7.0	32
23	Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways. World Journal of Gastroenterology, 2004, 10, 2731.	3.3	49