List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426244/publications.pdf Version: 2024-02-01



KEN MOTOKUDA

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Organic group decorated heterogeneous Pd complex on mesoporous silica toward catalytic allylation in aqueous media. Catalysis Today, 2023, 411-412, 113829.                                                                            | 2.2 | 1         |
| 2  | Mesoporous silica-supported rhodium complexes alongside organic functional groups for catalysing the 1,4-addition reaction of arylboronic acid in water. Green Chemistry, 2022, 24, 3269-3276.                                         | 4.6 | 6         |
| 3  | Montmorillonite-based heterogeneous catalysts for efficient organic reactions. Nano Express, 2022,<br>3, 014004.                                                                                                                       | 1.2 | 12        |
| 4  | Rhodium–lodide Complex on a Catalytically Active SiO <sub>2</sub> Surface for Oneâ€Pot<br>Hydrosilylation–CO <sub>2</sub> Cycloaddition. Chemistry - A European Journal, 2022, 28, .                                                   | 1.7 | 3         |
| 5  | Coexistence of Fe Nanoclusters Boosting Fe Single Atoms to Generate Singlet Oxygen for Efficient<br>Aerobic Oxidation of Primary Amines to Imines. ACS Catalysis, 2022, 12, 5595-5604.                                                 | 5.5 | 58        |
| 6  | Catalytic reduction and reductive functionalisation of carbon dioxide with waste silicon from solar panel as the reducing agent. Energy Advances, 2022, 1, 385-390.                                                                    | 1.4 | 3         |
| 7  | Modulating the Oxidation State of Titanium via Dual Anions Substitution for Efficient N <sub>2</sub><br>Electroreduction. Small, 2022, 18, .                                                                                           | 5.2 | 16        |
| 8  | Transition-metal-free reaction sequence on solid base: One-pot synthesis of quinoline derivatives catalyzed by Mg-Al hydrotalcite. Molecular Catalysis, 2022, 528, 112419.                                                             | 1.0 | 2         |
| 9  | Heterogeneous Organocatalysts for the Reduction of Carbon Dioxide with Silanes. ChemSusChem, 2021, 14, 281-292.                                                                                                                        | 3.6 | 28        |
| 10 | Reusable Silicaâ€5upported Ammonium BINSate Catalysts for Enantio―and Diastereoselective<br>Friedel–Craftsâ€Type Double Aminoalkylation of N â€Alkylpyrroles with Aldimines. Asian Journal of<br>Organic Chemistry, 2021, 10, 360-365. | 1.3 | 5         |
| 11 | Dehydrogenative Coupling of Alkanes and Benzene Enhanced by Slurry-Phase Interparticle Hydrogen<br>Transfer. Jacs Au, 2021, 1, 124-129.                                                                                                | 3.6 | 15        |
| 12 | Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation. Synthesis, 2021,<br>53, 3227-3234.                                                                                                                  | 1.2 | 2         |
| 13 | Porous FeO(OH) Dispersed on Mgâ€Al Hydrotalcite Surface for Oneâ€Pot Synthesis of Quinoline<br>Derivatives. ChemCatChem, 2021, 13, 2915-2921.                                                                                          | 1.8 | 9         |
| 14 | Highly Efficient and Stable Atomically Dispersed Cu Catalyst for Azideâ€Alkyne Cycloaddition Reaction.<br>ChemCatChem, 2021, 13, 3960-3966.                                                                                            | 1.8 | 9         |
| 15 | Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catalysis, 2021, 11, 11985-12018.                                                                                                       | 5.5 | 42        |
| 16 | Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS. Communications Chemistry, 2020, 3, .                                                                             | 2.0 | 26        |
| 17 | Heterogeneous Supported Palladium Catalysts for Liquidâ€Phase Allylation of Nucleophiles.<br>ChemPlusChem, 2020, 85, 2428-2437.                                                                                                        | 1.3 | 7         |
| 18 | Controllable Factors of Supported Ir Complex Catalysis for Aromatic C–H Borylation. ACS Catalysis, 2020, 10, 14552-14559.                                                                                                              | 5.5 | 10        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Accumulation of Active Species in Silica Mesopore: Effect of the Pore Size and Free Base Additives on<br>Pdâ€catalyzed Allylation using Allylic Alcohol. ChemCatChem, 2020, 12, 2783-2791.                          | 1.8 | 10        |
| 20 | Direct Alkylation of Benzene at Lower Temperatures in the Liquid Phase: Catalysis by Montmorillonites<br>as Nobleâ€Metalâ€Free Solid Acids. ChemPlusChem, 2020, 85, 450-453.                                        | 1.3 | 13        |
| 21 | Organic bases catalyze the synthesis of urea from ammonium salts derived from recovered environmental ammonia. Scientific Reports, 2020, 10, 2834.                                                                  | 1.6 | 19        |
| 22 | Recent Advances on Heterogeneous Metal Catalysts for Hydrosilylation of Olefins. Journal of the<br>Japan Petroleum Institute, 2020, 63, 1-9.                                                                        | 0.4 | 14        |
| 23 | A Resinâ€5upported Formate Catalyst for the Transformative Reduction of Carbon Dioxide with<br>Hydrosilanes. Chemistry - A European Journal, 2020, 26, 7937-7945.                                                   | 1.7 | 10        |
| 24 | Mechanistic Investigations of Liquid-phase Direct Alkylation of Benzene with<br><i>n</i> -Heptane Using Proton-exchanged Montmorillonite Catalysts. Journal of the Japan<br>Petroleum Institute, 2020, 63, 289-296. | 0.4 | 5         |
| 25 | Unexpected Formation of Triphenylborane from Phenylboronic Acid and Its Use as an Intermediate in<br>Palladiumâ€Catalyzed Cross Coupling Reaction. ChemistrySelect, 2019, 4, 10501-10505.                           | 0.7 | 0         |
| 26 | Silica-supported Alkylammonium Formate Catalyst for Hydrosilylation of Carbon Dioxide. Chemistry<br>Letters, 2019, 48, 1417-1420.                                                                                   | 0.7 | 6         |
| 27 | Formate-Catalyzed Selective Reduction of Carbon Dioxide to Formate Products Using Hydrosilanes.<br>ACS Sustainable Chemistry and Engineering, 2019, 7, 11056-11061.                                                 | 3.2 | 29        |
| 28 | Influence of a Co-immobilized Tertiary Amine on the Structure and Reactivity of a Rh Complex:<br>Accelerating Effect on Heterogeneous Hydrosilylation. Journal of Physical Chemistry C, 2019, 123,<br>14556-14563.  | 1.5 | 10        |
| 29 | Rh-catalyzed 1,4-addition reactions of arylboronic acids accelerated by co-immobilized tertiary amine in silica mesopores. Molecular Catalysis, 2019, 472, 1-9.                                                     | 1.0 | 3         |
| 30 | Carbon Dioxide to Organic Compounds Assisted by Silanes: Successive Transformation of Silyl<br>Formate to Various Products. Journal of the Japan Petroleum Institute, 2019, 62, 255-263.                            | 0.4 | 5         |
| 31 | Multifunctional Catalytic Surface Design for Concerted Acceleration of One-Pot<br>Hydrosilylation–CO2 Cycloaddition. Organic Letters, 2019, 21, 9372-9376.                                                          | 2.4 | 13        |
| 32 | Efficient Conversion of Carbon Dioxide with Siâ€Based Reducing Agents Catalyzed by Metal Complexes and Salts. Chemical Record, 2019, 19, 1199-1209.                                                                 | 2.9 | 11        |
| 33 | Silica Support-Enhanced Pd-Catalyzed Allylation Using Allylic Alcohols. ChemCatChem, 2018, 10, 4476-4476.                                                                                                           | 1.8 | 1         |
| 34 | Variable-Temperature XAFS Analysis of SiO2-Supported Pd–Bisphosphine Complexes With/Without<br>Co-immobilized Organic Functionality. Topics in Catalysis, 2018, 61, 1408-1413.                                      | 1.3 | 1         |
| 35 | Catalytic Conversion of Biomass-Derived Carbohydrates to Methyl Lactate by Acid–Base Bifunctional<br>γ-Al <sub>2</sub> O <sub>3</sub> . ACS Sustainable Chemistry and Engineering, 2018, 6, 8113-8117.              | 3.2 | 62        |
| 36 | Effects of Mesopore Internal Surfaces on the Structure of Immobilized Pd-Bisphosphine Complexes<br>Analyzed by Variable-Temperature XAFS and Their Catalytic Performances. Catalysts, 2018, 8, 106.                 | 1.6 | 4         |

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Transformative reduction of carbon dioxide through organocatalysis with silanes. Green Chemistry, 2018, 20, 4834-4843.                                                                                                                                                                                     | 4.6 | 62        |
| 38 | Silica Supportâ€Enhanced Pd atalyzed Allylation Using Allylic Alcohols. ChemCatChem, 2018, 10,<br>4536-4544.                                                                                                                                                                                               | 1.8 | 16        |
| 39 | Mechanistic Insight into Biomass Conversion to Five–membered Lactone Based on Computational and<br>Experimental Analysis. ChemistrySelect, 2017, 2, 591-597.                                                                                                                                               | 0.7 | 5         |
| 40 | Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated BrÄ,nsted acid sites. Physical Chemistry Chemical Physics, 2017, 19, 6508-6518.                                                                                                      | 1.3 | 1         |
| 41 | SiO <sub>2</sub> -Supported Rh Catalyst for Efficient Hydrosilylation of Olefins Improved by<br>Simultaneously Immobilized Tertiary Amines. ACS Catalysis, 2017, 7, 4637-4641.                                                                                                                             | 5.5 | 29        |
| 42 | Reductive transformation of CO 2 : Fluoride-catalyzed reactions with waste silicon-based reducing agents. Chinese Journal of Catalysis, 2017, 38, 434-439.                                                                                                                                                 | 6.9 | 10        |
| 43 | Concerted Catalysis in Tight Spaces: Palladiumâ€Catalyzed Allylation Reactions Accelerated by<br>Accumulated Active Sites in Mesoporous Silica. ChemCatChem, 2017, 9, 2924-2929.                                                                                                                           | 1.8 | 22        |
| 44 | Development of Multiactive Site Catalysts for Surface Concerted Catalysis Aimed at One-Pot<br>Synthesis. Bulletin of the Chemical Society of Japan, 2017, 90, 137-147.                                                                                                                                     | 2.0 | 17        |
| 45 | Catalytic Processes for Utilizing Carbohydrates Derived from Algal Biomass. Catalysts, 2017, 7, 163.                                                                                                                                                                                                       | 1.6 | 8         |
| 46 | Concerted Catalysis on Surface: Acceleration of Organic Reactions by Bifunctional Catalysts<br>Possessing Metal Complex, Metal Cation, and Organic Molecules. Yuki Gosei Kagaku Kyokaishi/Journal<br>of Synthetic Organic Chemistry, 2017, 75, 200-208.                                                    | 0.0 | 0         |
| 47 | Cascade Synthesis of Fiveâ€Membered Lactones using Biomassâ€Derived Sugars as Carbon Nucleophiles.<br>Chemistry - an Asian Journal, 2016, 11, 1731-1737.                                                                                                                                                   | 1.7 | 8         |
| 48 | Influence of the Interaction between a Tin Catalyst and an Accelerator on the Formoseâ€Inspired<br>Synthesis of αâ€Hydroxyâ€I³â€butyrolactone. ChemCatChem, 2016, 8, 1386-1391.                                                                                                                            | 1.8 | 9         |
| 49 | A Pd–bisphosphine complex and organic functionalities immobilized on the same SiO <sub>2</sub><br>surface: detailed characterization and its use as an efficient catalyst for allylation. Catalysis Science<br>and Technology, 2016, 6, 5380-5388.                                                         | 2.1 | 24        |
| 50 | Relationship between the Catalytic Activities of Acidic Protons in Aluminosilicate and<br>Silicoaluminophosphate Molecular Sieves for <i>n</i> Butane Cracking and Their <sup>1</sup> H<br>Chemical Shifts Measured at the Reaction Temperature. Journal of Physical Chemistry C, 2016, 120,<br>9207-9217. | 1.5 | 2         |
| 51 | Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol. Physical Chemistry Chemical Physics, 2016, 18, 25191-25209.                                                                                           | 1.3 | 42        |
| 52 | Direct Estimation of the Surface Location of Immobilized Functional Groups for Concerted Catalysis<br>Using a Probe Molecule. Chemistry - A European Journal, 2016, 22, 5113-5117.                                                                                                                         | 1.7 | 18        |
| 53 | Coâ€Immobilization of a Palladium–Bisphosphine Complex and Strong Organic Base on a Silica Surface<br>for Heterogeneous Synergistic Catalysis. ChemCatChem, 2016, 8, 331-335.                                                                                                                              | 1.8 | 22        |
| 54 | Reductive Transformation of CO2 with Hydrosilanes Catalyzed by Simple Fluoride and Carbonate Salts. Chemistry Letters, 2015, 44, 1217-1219.                                                                                                                                                                | 0.7 | 68        |

| #  | Article                                                                                                                                                                                                                       | IF          | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 55 | Silicone Wastes as Reducing Agents for Carbon Dioxide Transformation: Fluoride-catalyzed Formic<br>Acid Synthesis from CO <sub>2</sub> , H <sub>2</sub> O, and Disilanes. Chemistry Letters, 2015, 44,<br>1464-1466.          | 0.7         | 20        |
| 56 | Mechanistic Insight into a Sugarâ€Accelerated Tinâ€Catalyzed Cascade Synthesis of αâ€Hydroxyâ€Î³â€butyrolac<br>from Formaldehyde. ChemSusChem, 2015, 8, 3661-3667.                                                            | tone<br>3.6 | 7         |
| 57 | Heterogeneous double-activation catalysis: Rh complex and tertiary amine on the same solid surface<br>for the 1,4-addition reaction of aryl- and alkylboronic acids. Catalysis Science and Technology, 2015, 5,<br>2714-2727. | 2.1         | 30        |
| 58 | Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane. Physical Chemistry Chemical Physics, 2015, 17, 5014-5032.                            | 1.3         | 22        |
| 59 | Mechanistic Studies on the Cascade Conversion of 1,3â€Dihydroxyacetone and Formaldehyde into<br>αâ€Hydroxyâ€Î³â€butyrolactone. ChemSusChem, 2015, 8, 853-860.                                                                 | 3.6         | 22        |
| 60 | Discrimination of the prochiral hydrogens at the C-2 position of n-alkanes by the methane/ammonia monooxygenase family proteins. Organic and Biomolecular Chemistry, 2015, 13, 8261-8270.                                     | 1.5         | 4         |
| 61 | Designating Oxygen Anions in Al–ITQ-21 as BrÃ,nsted Acid Sites Using DFT Calculations. Journal of<br>Physical Chemistry C, 2015, 119, 16568-16577.                                                                            | 1.5         | 0         |
| 62 | One-step catalytic conversion of ethanol into 1,3-butadiene using zinc-containing talc. Catalysis Communications, 2015, 68, 20-24.                                                                                            | 1.6         | 40        |
| 63 | Synergistic Catalysis by Multifunctionalized Solid Surfaces for Nucleophilic Addition Reactions.<br>Journal of the Japan Petroleum Institute, 2014, 57, 95-108.                                                               | 0.4         | 7         |
| 64 | Multifunctional Solid Surfaces for Enhanced Catalysis. ChemCatChem, 2014, 6, 3067-3068.                                                                                                                                       | 1.8         | 12        |
| 65 | Allylsilylation of alkenes catalyzed by H + -exchanged montmorillonite with water. Catalysis Today, 2014, 226, 141-149.                                                                                                       | 2.2         | 4         |
| 66 | Zinc-Accelerated Cycloaddition of Carbon Dioxide to Styrene Oxide Catalyzed by Pyrrolidinopyridinium lodides. Topics in Catalysis, 2014, 57, 953-959.                                                                         | 1.3         | 9         |
| 67 | Surface Functionalization for Synergistic Catalysis: Silica–Alumina‧upported Cationic Indium and<br>Organic Base for Cyanoethoxycarbonylation. ChemPlusChem, 2014, 79, 1053-1058.                                             | 1.3         | 13        |
| 68 | A method for the cyanation of alkenes using nitromethane as a source of cyano group mediated by proton-exchanged montmorillonite. Tetrahedron Letters, 2014, 55, 7034-7038.                                                   | 0.7         | 5         |
| 69 | Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to<br>α-hydroxy-γ-butyrolactone. Chemical Communications, 2014, 50, 4600.                                                                           | 2.2         | 24        |
| 70 | Mechanistic studies on the N-formylation of amines with CO2 and hydrosilane catalyzed by a<br>Cu–diphosphine complex. Tetrahedron, 2014, 70, 6951-6956.                                                                       | 1.0         | 39        |
| 71 | Efficient Allylation of Nucleophiles Catalyzed by a Bifunctional Heterogeneous Palladium<br>Complexâ€Tertiary Amine System. Advanced Synthesis and Catalysis, 2013, 355, 973-980.                                             | 2.1         | 37        |
| 72 | Copper-diphosphine complex catalysts for N-formylation of amines under 1 atm of carbon dioxide with polymethylhydrosiloxane. Catalysis Science and Technology, 2013, 3, 2392.                                                 | 2.1         | 93        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Selective production of ethylene and propylene via monomolecular cracking of pentene over proton-exchanged zeolites: Pentene cracking mechanism determined by spatial volume of zeolite cavity. Journal of Catalysis, 2013, 302, 101-114.             | 3.1 | 49        |
| 74 | Identification and Catalytic Behavior of BrÃ,nsted Acid Sites on Al-Containing ITQ-21. Journal of Physical Chemistry C, 2013, 117, 18074-18083.                                                                                                       | 1.5 | 4         |
| 75 | Highly Active and Selective Catalysis of Copper Diphosphine Complexes for the Transformation of<br>Carbon Dioxide into Silyl Formate. Chemistry - A European Journal, 2013, 19, 10030-10037.                                                          | 1.7 | 99        |
| 76 | Water-Accelerated Allylsilylation of Alkenes Using a Proton-Exchanged Montmorillonite Catalyst.<br>ACS Catalysis, 2012, 2, 1942-1946.                                                                                                                 | 5.5 | 19        |
| 77 | Shape-Selective Catalysis Determined by the Volume of a Zeolite Cavity and the Reaction Mechanism for<br>Propylene Production by the Conversion of Butene Using a Proton-Exchanged Zeolite. Journal of<br>Physical Chemistry C, 2012, 116, 5182-5196. | 1.5 | 45        |
| 78 | Temperature Effect on <sup>1</sup> H Chemical Shift of Hydroxyl Groups in Zeolites and Their<br>Catalytic Activities as Solid Acids. Journal of Physical Chemistry C, 2012, 116, 14551-14560.                                                         | 1.5 | 16        |
| 79 | Proton Exchange Reaction between Hydroxyl Groups in the Supercage and Those in the Sodalitecage<br>of Y Zeolite As Studied by Variable Temperature1H MAS NMR. Journal of Physical Chemistry C, 2012, 116,<br>17734-17738.                             | 1.5 | 7         |
| 80 | Copper-Catalyzed Formic Acid Synthesis from CO <sub>2</sub> with Hydrosilanes and H <sub>2</sub> 0. Organic Letters, 2012, 14, 2642-2645.                                                                                                             | 2.4 | 160       |
| 81 | An atom-efficient synthetic method: carbosilylations of alkenes, alkynes, and cyclic acetals using<br>Lewis and BrÃ,nsted acid catalysts. Green Chemistry, 2012, 14, 565.                                                                             | 4.6 | 33        |
| 82 | Heterogeneous Synergistic Catalysis by a Palladium Complex and an Amine on a Silica Surface for<br>Acceleration of the Tsuji–Trost Reaction. Angewandte Chemie - International Edition, 2012, 51,<br>8017-8020.                                       | 7.2 | 57        |
| 83 | Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking. Journal of Catalysis, 2012, 289, 53-61.                                                                                        | 3.1 | 103       |
| 84 | Rhodium-grafted hydrotalcite catalyst for heterogeneous 1,4-addition reaction of organoboron reagents to electron deficient olefins. Green Chemistry, 2011, 13, 2416.                                                                                 | 4.6 | 23        |
| 85 | Catalytic synthesis of homoallyloxyalcohols and 1,2-bis(homoallyloxy)ethanes through ring-opening allylation of cyclic acetals with allylsilanes over solid acids. Catalysis Science and Technology, 2011, 1, 470.                                    | 2.1 | 8         |
| 86 | Solvent-induced selectivity switching: intermolecular allylsilylation, arylsilylation, and silylation of alkynes over montmorillonite catalyst. Tetrahedron Letters, 2011, 52, 6687-6692.                                                             | 0.7 | 13        |
| 87 | "Ligandâ€Consuming―Formation of Rhodiumâ€Hydride Species from [Rh(OH)(cod)] <sub>2</sub> Without<br>any Additional Hydride Sources for Catalytic Olefin Isomerizations and Cyclobutene Synthesis.<br>ChemCatChem, 2011, 3, 1419-1421.                 | 1.8 | 24        |
| 88 | The substrate binding cavity of particulate methane monooxygenase from Methylosinus<br>trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to<br>2-alcohol. Biotechnology Letters, 2011, 33, 2241-2246.         | 1.1 | 18        |
| 89 | Heterogeneous Allylsilylation of Aromatic and Aliphatic Alkenes Catalyzed by Proton-Exchanged<br>Montmorillonite. Organic Letters, 2010, 12, 1508-1511.                                                                                               | 2.4 | 34        |
| 90 | Key role of the pore volume of zeolite for selective production of propylene from olefins. Physical<br>Chemistry Chemical Physics, 2010, 12, 2541.                                                                                                    | 1.3 | 77        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Catalytic ring-opening allylation of cyclic acetals with allylsilanes using silica-alumina. Green Chemistry, 2010, 12, 1373.                                                                                                 | 4.6 | 11        |
| 92  | Bifunctional Heterogeneous Catalysis of Silica–Aluminaâ€Supported Tertiary Amines with Controlled<br>Acid–Base Interactions for Efficient 1,4â€Addition Reactions. Chemistry - A European Journal, 2009, 15,<br>10871-10879. | 1.7 | 35        |
| 93  | Michael Reactions Catalyzed by Basic Alkylamines and Dialkylaminopyridine Immobilized on Acidic<br>Silica–Alumina Surfaces. Topics in Catalysis, 2009, 52, 579-585.                                                          | 1.3 | 17        |
| 94  | Creation of acid–base bifunctional catalysis for efficient CC coupling reactions by amines<br>immobilization on SiO2, silica-alumina, and nano-H-ZSM-5. Catalysis Today, 2009, 141, 19-24.                                   | 2.2 | 21        |
| 95  | Organofunctionalized catalyst surfaces highly active and selective for carbon–carbon bond-forming reactions. Catalysis Today, 2009, 147, 203-210.                                                                            | 2.2 | 16        |
| 96  | Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences.<br>Journal of the American Chemical Society, 2009, 131, 7944-7945.                                                        | 6.6 | 122       |
| 97  | Influence of Si distribution in framework of SAPO-34 and its particle size on propylene selectivity and production rate for conversion of ethylene to propylene. Physical Chemistry Chemical Physics, 2009, 11, 9268.        | 1.3 | 62        |
| 98  | Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chemistry, 2009, 11, 1876.                                       | 4.6 | 156       |
| 99  | Conceptual Integration of Homogeneous and Heterogeneous Catalyses. Topics in Catalysis, 2008, 48, 32-40.                                                                                                                     | 1.3 | 25        |
| 100 | Acid–Base Bifunctional Catalysis of Silica–Alumina‣upported Organic Amines for Carbon–Carbon<br>Bondâ€Forming Reactions. Chemistry - A European Journal, 2008, 14, 4017-4027.                                                | 1.7 | 73        |
| 101 | Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for Oneâ€Pot CC<br>Bond Forming Reactions. Angewandte Chemie - International Edition, 2008, 47, 9230-9235.                               | 7.2 | 101       |
| 102 | Photoinduced Reversible Structural Transformation and Selective Oxidation Catalysis of<br>Unsaturated Ruthenium Complexes Supported on SiO <sub>2</sub> . Angewandte Chemie - International<br>Edition, 2008, 47, 9252-9255. | 7.2 | 24        |
| 103 | Acid–Base Bifunctional Catalytic Surfaces for Nucleophilic Addition Reactions. Chemistry - an Asian<br>Journal, 2008, 3, 1230-1236.                                                                                          | 1.7 | 61        |
| 104 | Hydrotalcite-bound ruthenium as a multifunctional heterogeneous catalyst for one-pot synthesis of<br>α-alkylated nitriles and quinolines. Research on Chemical Intermediates, 2008, 34, 475-486.                             | 1.3 | 5         |
| 105 | Recyclable indium catalysts for additions of 1,3-dicarbonyl compounds to unactivated alkynes affected by structure and acid strength of solid supports. Green Chemistry, 2008, 10, 1231.                                     | 4.6 | 17        |
| 106 | Heterogeneous Organic Base-Catalyzed Reactions Enhanced by Acid Supports. Journal of the American<br>Chemical Society, 2007, 129, 9540-9541.                                                                                 | 6.6 | 136       |
| 107 | Nucleophilic Substitution Reactions of Alcohols with Use of Montmorillonite Catalysts as Solid<br>BrÃ,nsted Acids. Journal of Organic Chemistry, 2007, 72, 6006-6015.                                                        | 1.7 | 198       |
| 108 | Efficient Câ^'N Bond Formations Catalyzed by a Proton-Exchanged Montmorillonite as a Heterogeneous<br>BrÃ,nsted Acid. Organic Letters, 2006, 8, 4617-4620.                                                                   | 2.4 | 111       |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Reconstructed Hydrotalcite as a Highly Active Heterogeneous Base Catalyst for Carbonâ^'Carbon Bond<br>Formations in the Presence of Water. Journal of Organic Chemistry, 2006, 71, 5440-5447.                                                                         | 1.7 | 147       |
| 110 | A rhodium-grafted hydrotalcite as a highly efficient heterogeneous catalyst for 1,4-addition of<br>organoboron reagents to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2006, 47, 5083-5087.                                                              | 0.7 | 22        |
| 111 | Highly efficient heterogeneous acylations of aromatic compounds with acid anhydrides and carboxylic acids by montmorillonite-enwrapped titanium as a solid acid catalyst. Research on Chemical Intermediates, 2006, 32, 305-315.                                      | 1.3 | 12        |
| 112 | Environmentally Friendly One-Pot Synthesis of α-Alkylated Nitriles Using Hydrotalcite-Supported Metal<br>Species as Multifunctional Solid Catalysts. Chemistry - A European Journal, 2006, 12, 8228-8239.                                                             | 1.7 | 118       |
| 113 | BrÃ,nsted Acid Mediated Heterogeneous Addition Reaction of 1,3-Dicarbonyl Compounds to Alkenes and<br>Alcohols. Angewandte Chemie - International Edition, 2006, 45, 2605-2609.                                                                                       | 7.2 | 136       |
| 114 | One-pot synthesis of α-alkylated nitriles with carbonyl compounds through consecutive aldol<br>reaction/hydrogenation using a hydrotalcite-supported palladium nanoparticle as a multifunctional<br>heterogeneous catalyst. Tetrahedron Letters, 2005, 46, 5507-5510. | 0.7 | 56        |
| 115 | Heterotrimetallic RuMnMn Species on a Hydrotalcite Surface as Highly Efficient Heterogeneous<br>Catalysts for Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie -<br>International Edition, 2005, 44, 3423-3426.                            | 7.2 | 101       |
| 116 | An Acidic Layered Clay Is Combined with a Basic Layered Clay for One-Pot Sequential Reactions<br>ChemInform, 2005, 36, no.                                                                                                                                            | 0.1 | 0         |
| 117 | One-Pot Synthesis of α-Alkylated Nitriles with Carbonyl Compounds Through Consecutive Aldol<br>Reaction/Hydrogenation Using a Hydrotalcite-Supported Palladium Nanoparticle as a Multifunctional<br>Heterogeneous Catalyst ChemInform, 2005, 36, no.                  | 0.1 | Ο         |
| 118 | An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions. Journal of the American Chemical Society, 2005, 127, 9674-9675.                                                                                                        | 6.6 | 182       |
| 119 | A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols ChemInform, 2004, 35, no.                                                                                                                    | 0.1 | Ο         |
| 120 | Multifunctional Catalysis of a Ruthenium-Grafted Hydrotalcite: One-Pot Synthesis of Quinolines from<br>2-Aminobenzyl Alcohol and Various Carbonyl Compounds via Aerobic Oxidation and Aldol Reaction<br>ChemInform, 2004, 35, no.                                     | 0.1 | 0         |
| 121 | Multifunctional catalysis of a ruthenium-grafted hydrotalcite: one-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Letters, 2004, 45, 6029-6032.                          | 0.7 | 118       |
| 122 | A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols. Journal of the American Chemical Society, 2004, 126, 5662-5663.                                                                             | 6.6 | 248       |
| 123 | Fluoride Catalysts and Organic Additives for Conversion of CO <sub>2</sub> to Formic Acid and<br>Methanol using Powdered Silicon as Reducing Agent. Asian Journal of Organic Chemistry, 0, , .                                                                        | 1.3 | 1         |