List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426220/publications.pdf Version: 2024-02-01

		11651	12597
223	19,759	70	132
papers	citations	h-index	g-index
223	223	223	16392
	223	225	10392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138
2	[31] Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods in Enzymology, 1994, 235, 386-405.	1.0	852
3	Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 2007, 18, 257-266.	6.6	769
4	An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2000, 2, 39-50.	3.8	720
5	Analysis of Pseudomonas gene products using laclq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene, 1993, 123, 17-24.	2.2	429
6	Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 2006, 24, 997-1004.	17.5	417
7	Oral Somatic Transgene Vaccination Using Attenuated S. typhimurium. Cell, 1997, 91, 765-775.	28.9	400
8	Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scandinavian Journal of Gastroenterology, 2008, 43, 831-841.	1.5	375
9	TRANSCRIPTIONAL CONTROL OF THEPSEUDOMONASTOL PLASMID CATABOLIC OPERONS IS ACHIEVED THROUGH AN INTERPLAY OF HOST FACTORS AND PLASMID-ENCODED REGULATORS. Annual Review of Microbiology, 1997, 51, 341-373.	7.3	315
10	Replication control in a composite plasmid constructed by in vitro linkage of two distinct replicons. Nature, 1976, 259, 285-290.	27.8	298
11	Thermal Gradient Gel Electrophoresis Analysis of Bioprotection from Pollutant Shocks in the Activated Sludge Microbial Community. Applied and Environmental Microbiology, 1999, 65, 102-109.	3.1	291
12	A general system to integratelacZ fusions into the chromosomes of gram-negative eubacteria: regulation of thePm promoter of theTOL plasmid studied with all controlling elements in monocopy. Molecular Genetics and Genomics, 1992, 233, 293-301.	2.4	285
13	Pseudomonas putida: a cosmopolitan opportunist par excellence. Environmental Microbiology, 2002, 4, 779-781.	3.8	278
14	Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil. Applied and Environmental Microbiology, 2001, 67, 1874-1884.	3.1	276
15	The Enigma of Prokaryotic Life in Deep Hypersaline Anoxic Basins. Science, 2005, 307, 121-123.	12.6	275
16	Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Current Opinion in Microbiology, 2002, 5, 246-253.	5.1	263
17	Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology, 2005, 7, 1996-2010.	3.8	258
18	Limits of life in MgCl ₂ â€containing environments: chaotropicity defines the window. Environmental Microbiology, 2007, 9, 801-813.	3.8	254

#	Article	IF	CITATIONS
19	Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environmental Microbiology, 2007, 9, 177-186.	3.8	242
20	Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology. PLoS Computational Biology, 2008, 4, e1000210.	3.2	237
21	Is there a common water-activity limit for the three domains of life?. ISME Journal, 2015, 9, 1333-1351.	9.8	229
22	Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 2003, 21, 1266-1267.	17.5	228
23	Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature, 2006, 440, 203-207.	27.8	215
24	Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environmental Microbiology, 2007, 9, 165-176.	3.8	201
25	Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. Molecular Genetics and Genomics, 1978, 162, 121-137.	2.4	200
26	Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene, 1993, 130, 47-55.	2.2	195
27	Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environmental Microbiology, 2005, 7, 1426-1441.	3.8	194
28	Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Molecular Microbiology, 1996, 20, 119-126.	2.5	182
29	The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene, 1994, 144, 9-16.	2.2	174
30	Designing Microorganisms for the Treatment of Toxic Wastes. Annual Review of Microbiology, 1994, 48, 525-557.	7.3	174
31	Detection and Diversity of Expressed Denitrification Genes in Estuarine Sediments after Reverse Transcription-PCR Amplification from mRNA. Applied and Environmental Microbiology, 2002, 68, 5017-5025.	3.1	174
32	Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen. Journal of Biological Chemistry, 2006, 281, 22933-22942.	3.4	168
33	Genetic Analysis of Dioxin Dioxygenase of <i>Sphingomonas</i> sp. Strain RW1: Catabolic Genes Dispersed on the Genome. Journal of Bacteriology, 1998, 180, 3954-3966.	2.2	165
34	Chaotropic solutes cause water stress in Pseudomonas putida. Environmental Microbiology, 2003, 5, 1270-1280.	3.8	153
35	Identification of the metabolically active members of a bacterial community in a polychlorinated biphenylâ€polluted moorland soil. Environmental Microbiology, 1999, 1, 199-212.	3.8	148
36	Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental Microbiology, 2007, 9, 1562-1571.	3.8	146

#	Article	IF	CITATIONS
37	Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environmental Microbiology, 2005, 7, 1277-1288.	3.8	143
38	Microbial Enzymes Mined from the Urania Deep-Sea Hypersaline Anoxic Basin. Chemistry and Biology, 2005, 12, 895-904.	6.0	142
39	Proteomic Insights into Metabolic Adaptations in Alcanivorax borkumensis Induced by Alkane Utilization. Journal of Bacteriology, 2006, 188, 3763-3773.	2.2	139
40	Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environmental Microbiology, 1999, 1, 167-174.	3.8	136
41	Domain structure and conserved epitopes of Sfb protein, the fibronectin-binding adhesin of Streptococcus pyogenes. Molecular Microbiology, 1994, 13, 531-539.	2.5	135
42	Analysis of Storage Lipid Accumulation in <i>Alcanivorax borkumensis</i> : Evidence for Alternative Triacylglycerol Biosynthesis Routes in Bacteria. Journal of Bacteriology, 2007, 189, 918-928.	2.2	133
43	Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 2015, 17, 257-277.	3.8	131
44	Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene, 1997, 196, 69-74.	2.2	130
45	7- <i>O</i> -Malonyl Macrolactin A, a New Macrolactin Antibiotic from <i>Bacillus subtilis</i> Active against Methicillin-Resistant <i>Staphylococcus aureus</i> , Vancomycin-Resistant Enterococci, and a Small-Colony Variant of <i>Burkholderia cepacia</i> .Antimicrobial Agents and Chemotherapy, 2006, 50, 1701-1709.	3.2	129
46	The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. Journal of Petroleum Science and Engineering, 1997, 18, 147-160.	4.2	128
47	Removal of Mercury from Chemical Wastewater by Microoganisms in Technical Scale. Environmental Science & Technology, 2000, 34, 4628-4634.	10.0	126
48	Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology, 2003, 106, 215-220.	3.8	126
49	Viable cyanobacteria in the deep continental subsurface. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10702-10707.	7.1	124
50	From Xenobiotic to Antibiotic, Formation of Protoanemonin from 4-Chlorocatechol by Enzymes of the 3-Oxoadipate Pathway. Journal of Biological Chemistry, 1995, 270, 29229-29235.	3.4	115
51	Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene, 1993, 130, 41-46.	2.2	113
52	Characterization of marine isopreneâ€degrading communities. Environmental Microbiology, 2009, 11, 3280-3291.	3.8	111
53	Regiospecificity of Dioxygenation of Di- to Pentachlorobiphenyls and Their Degradation to Chlorobenzoates by the <i>bph</i> -Encoded Catabolic Pathway of <i>Burkholderia</i> sp. Strain LB400. Applied and Environmental Microbiology, 1999, 65, 3614-3621.	3.1	109
54	In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagnostic Microbiology and Infectious Disease, 2004, 50, 237-245.	1.8	105

#	Article	IF	CITATIONS
55	Halophilic archaea in the human intestinal mucosa. Environmental Microbiology, 2010, 12, 2398-2410.	3.8	105
56	Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Current Genetics, 2015, 61, 457-477.	1.7	101
57	Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea. ISME Journal, 2007, 1, 743-755.	9.8	99
58	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
59	The evolutionary relationship of biphenyl dioxygenase from Gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from Gram-negative bacteria. Gene, 1995, 156, 11-18.	2.2	93
60	Signal-regulator interactions, genetic analysis of the effector binding site of xyls, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of Molecular Biology, 1990, 211, 373-382.	4.2	92
61	Effect of the Earthworms Lumbricus terrestris and Aporrectodea caliginosa on Bacterial Diversity in Soil. Microbial Ecology, 2010, 59, 574-587.	2.8	92
62	Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats. Applied and Environmental Microbiology, 2012, 78, 3638-3648.	3.1	90
63	Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate 1,2-dioxygenase, encoded by TOL plasmid pWWO of Pseudomonas putida. Molecular Genetics and Genomics, 1986, 202, 226-234.	2.4	89
64	Analysis of the K1 capsule biosynthesis genes of Escherichia coli: Definition of three functional regions for capsule production. Molecular Genetics and Genomics, 1987, 208, 242-246.	2.4	89
65	The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature, 2007, 445, 91-94.	27.8	88
66	Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiology Ecology, 2006, 58, 260-270.	2.7	87
67	Adaptation of the Hydrocarbonoclastic Bacterium Alcanivorax borkumensis SK2 to Alkanes and Toxic Organic Compounds: a Physiological and Transcriptomic Approach. Applied and Environmental Microbiology, 2013, 79, 4282-4293.	3.1	85
68	Plasmid replication functions. Molecular Genetics and Genomics, 1979, 168, 1-25.	2.4	84
69	Identification of Chlorobenzene Dioxygenase Sequence Elements Involved in Dechlorination of 1,2,4,5-Tetrachlorobenzene. Journal of Bacteriology, 1998, 180, 5520-5528.	2.2	80
70	Mutation in a " tesB -Like―Hydroxyacyl-Coenzyme A-Specific Thioesterase Gene Causes Hyperproduction of Extracellular Polyhydroxyalkanoates by Alcanivorax borkumensis SK2. Journal of Bacteriology, 2006, 188, 8452-8459.	2.2	79
71	Identification of Functional Residues in a 2-Hydroxymuconic Semialdehyde Hydrolase. Journal of Biological Chemistry, 1995, 270, 6403-6411.	3.4	77
72	Plasmid incompatibility: cloning analysis of an inc FII determinant of R6-5. Nature, 1978, 273, 27-32.	27.8	76

#	Article	IF	CITATIONS
73	Universal barrier to lateral spread of specific genes among microorganisms. Molecular Microbiology, 1994, 13, 855-861.	2.5	75
74	An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: Export of shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nature Biotechnology, 1996, 14, 765-769.	17.5	75
75	Genetic and Biochemical Characterization of the Broad Spectrum Chlorobenzene Dioxygenase from Burkholderia Sp. Strain PS12 - Dechlorination of 1,2,4,5-Tetrachlorobenzene. FEBS Journal, 1997, 247, 190-199.	0.2	74
76	A Functional 4-Hydroxysalicylate/Hydroxyquinol Degradative Pathway Gene Cluster Is Linked to the Initial Dibenzo- <i>p</i> -Dioxin Pathway Genes in <i>Sphingomonas</i> sp. Strain RW1. Journal of Bacteriology, 1999, 181, 3452-3461.	2.2	74
77	Low temperature-induced systems failure inEscherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics, 2006, 6, 193-206.	2.2	73
78	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	4.2	73
79	Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Archives of Microbiology, 1995, 163, 35-41.	2.2	72
80	Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nature Biotechnology, 1997, 15, 378-382.	17.5	72
81	Compatible Solutes Protect against Chaotrope (Ethanol)-Induced, Nonosmotic Water Stress. Applied and Environmental Microbiology, 2003, 69, 7032-7034.	3.1	72
82	Expression of a Temperature-Sensitive Esterase in a Novel Chaperone-Based Escherichia coli Strain. Applied and Environmental Microbiology, 2004, 70, 4499-4504.	3.1	71
83	Biochemical and Genetic Characterization of a Gentisate 1,2-Dioxygenase from <i>Sphingomonas</i> sp. Strain RW5. Journal of Bacteriology, 1998, 180, 4171-4176.	2.2	71
84	The xylS gene positive regulator of TOL plasmid pWWO: Identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Molecular Genetics and Genomics, 1987, 207, 349-354.	2.4	70
85	Crystal structure of cisâ€biphenylâ€2,3â€dihydrodiolâ€2,3â€dehydrogenase from a PCB degrader at 2.0 Ã resolution. Protein Science, 1998, 7, 1286-1293.	7.6	69
86	Activation and Repression of Transcription at the Double Tandem Divergent Promoters for the <i>xylR</i> and <i>xylS</i> Genes of the TOL Plasmid of <i>Pseudomonas putida</i> . Journal of Bacteriology, 1998, 180, 2889-2894.	2.2	69
87	Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiology Letters, 2011, 319, 160-168.	1.8	65
88	Degradation of 1,2,3,4-Tetrachlorobenzene by <i>Pseudomonas chlororaphis</i> RW71. Applied and Environmental Microbiology, 1998, 64, 3798-3806.	3.1	65
89	Cloning of chicken lysozyme structural gene sequences synthesized in vitro. Nucleic Acids Research, 1978, 5, 3275-3294.	14.5	64
90	Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna (Italy). Environmental Microbiology, 2002, 4, 249-256.	3.8	64

#	Article	IF	CITATIONS
91	Three Stages of a Biofilm Community Developing at the Liquid-Liquid Interface between Polychlorinated Biphenyls and Water. Applied and Environmental Microbiology, 2005, 71, 7301-7309.	3.1	64
92	16S rRNA gene sequence analyses and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiology Letters, 2006, 151, 145-153.	1.8	64
93	A Novel [2Fe-2S] Ferredoxin from Pseudomonas putidamt2 Promotes the Reductive Reactivation of Catechol 2,3-Dioxygenase. Journal of Biological Chemistry, 1998, 273, 9622-9629.	3.4	63
94	Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus. Journal of Bacteriology, 2016, 198, 1401-1413.	2.2	60
95	Substrate Specificity and Expression of Three 2,3-Dihydroxybiphenyl 1,2-Dioxygenases from <i>Rhodococcus globerulus</i> Strain P6. Journal of Bacteriology, 2003, 185, 2944-2951.	2.2	58
96	â€~ <i>Candidatus</i> Lumbricincola', a novel lineage of uncultured <i>Mollicutes</i> from earthworms of family <i>Lumbricidae</i> . Environmental Microbiology, 2009, 11, 1016-1026.	3.8	57
97	<i>Pseudomonas putida</i> Strains Which Constitutively Overexpress Mercury Resistance for Biodetoxification of Organomercurial Pollutants. Applied and Environmental Microbiology, 1994, 60, 357-362.	3.1	57
98	Molecular Characterization of Fdx1, a Putidaredoxin-Type [2Fe-2S] Ferredoxin Able to Transfer Electrons to the Dioxin Dioxygenase of Sphingomonas sp. RW1. FEBS Journal, 1997, 247, 833-842.	0.2	56
99	Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiology Ecology, 2005, 52, 207-217.	2.7	55
100	Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environmental Microbiology, 2005, 7, 1192-1199.	3.8	55
101	Genetic and Biochemical Analyses of the <i>tec</i> Operon Suggest a Route for Evolution of Chlorobenzene Degradation Genes. Journal of Bacteriology, 1999, 181, 341-346.	2.2	55
102	Degradation of chlorobiphenyls catalyzed by the <i>bph</i> -encoded biphenyl-2,3-dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase of <i>Pseudomonas</i> sp. LB400. FEMS Microbiology Letters, 1995, 133, 259-264.	1.8	54
103	Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Research, 2005, 33, 4016-4022.	14.5	54
104	<scp>The importance of naturally attenuated SARSâ€CoV</scp> â€2 <scp>in the fight against COVID</scp> â€19. Environmental Microbiology, 2020, 22, 1997-2000.	3.8	54
105	The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology, 2021, 14, 769-797.	4.2	53
106	Upstream binding sequences of the XyIR activator protein and integration host factor in thexylSgene promoter region of thePseudomonasTOL plasmid. Nucleic Acids Research, 1992, 20, 1755-1762.	14.5	52
107	Impact of a simulated oil spill on benthic phototrophs and nitrogenâ€fixing bacteria in mudflat mesocosms. Environmental Microbiology, 2013, 15, 242-252.	3.8	52
108	3-Nitroadipate, a Metabolic Intermediate for Mineralization of 2,4-Dinitrophenol by a New Strain of a Rhodococcus Species. Journal of Bacteriology, 1999, 181, 149-152.	2.2	52

#	Article	IF	CITATIONS
109	Rapid assay for the determination of bacterial resistance to the lethal activity of serum. FEMS Microbiology Letters, 1979, 6, 273-276.	1.8	49
110	Identification of a cis-acting Sequence within the Pm Promoter of the TOL Plasmid which Confers XylS-mediated Responsiveness to Substituted Benzoates. Journal of Molecular Biology, 1993, 230, 699-703.	4.2	49
111	The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Molecular Microbiology, 1996, 19, 667-681.	2.5	48
112	The 'pH optimum anomaly' of intracellular enzymes of Ferroplasma acidiphilum. Environmental Microbiology, 2006, 8, 416-425.	3.8	48
113	System to study horizontal gene exchange among microorganisms without cultivation of recipients. Molecular Microbiology, 1996, 22, 207-215.	2.5	47
114	Bacterial pathways for the degradation of polychlorinated biphenyls. Marine Chemistry, 1997, 58, 327-333.	2.3	47
115	The long journey towards standards for engineering biosystems. EMBO Reports, 2020, 21, e50521.	4.5	46
116	Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. FEBS Journal, 1993, 213, 211-216.	0.2	45
117	Replication Region Fragments Cloned from F <i>lac</i> ⁺ Are Identical to <i>Eco</i> RI Fragment f5 of F. Journal of Bacteriology, 1976, 127, 1571-1575.	2.2	45
118	Inheritance functions of group IncFII transmissible antibiotic resistance plasmids. Plasmid, 1981, 5, 53-75.	1.4	44
119	Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiology Ecology, 2009, 69, 288-300.	2.7	44
120	tra cistrons and proteins encoded by the Escherichia coli antibiotic resistance plasmid R6-5. Molecular Genetics and Genomics, 1978, 163, 169-179.	2.4	43
121	Plasmid replication functions. Molecular Genetics and Genomics, 1979, 168, 27-36.	2.4	43
122	Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiology Ecology, 1998, 27, 211-224.	2.7	43
123	Protein complex formation during denitrification by <i>Pseudomonas aeruginosa</i> . Microbial Biotechnology, 2017, 10, 1523-1534.	4.2	43
124	The COVID â€19 pandemic: some lessons learned about crisis preparedness and management, and the need for international benchmarking to reduce deficits. Environmental Microbiology, 2020, 22, 1986-1996.	3.8	43
125	Functional consequences of single:double ring transitions in chaperonins: life in the cold. Molecular Microbiology, 2004, 53, 167-182.	2.5	42
126	Widespread capacity to metabolize polychlorinated biphenyls by diverse microbial communities in soils with no significant exposure to PCB contamination. Environmental Microbiology, 2007, 9, 1890-1897.	3.8	41

#	Article	IF	CITATIONS
127	Reactome Array: Forging a Link Between Metabolome and Genome. Science, 2009, 326, 252-257.	12.6	39
128	Degradation of Chlorobenzenes at Nanomolar Concentrations by <i>Burkholderia</i> sp. Strain PS14 in Liquid Cultures and in Soil. Applied and Environmental Microbiology, 1999, 65, 2547-2552.	3.1	39
129	Monoclonal antibody against pIII of filamentous phage: an immunological tool to study pIII fusion protein expression in phage display systems. Immunotechnology: an International Journal of Immunological Engineering, 1995, 1, 53-64.	2.4	37
130	The reductase RedA2 of the multiâ€component dioxin dioxygenase system of <i>Sphingomonas </i> sp. RW1 is related to classâ€l cytochrome <i>P</i> ₄₅₀ â€type reductases. FEBS Journal, 1998, 253, 437-444.	0.2	37
131	A Second [2Fe-2S] Ferredoxin from <i>Sphingomonas</i> sp. Strain RW1 Can Function as an Electron Donor for the Dioxin Dioxygenase. Journal of Bacteriology, 2000, 182, 2238-2244.	2.2	37
132	Dynamics of Reductive Genome Evolution in Mitochondria and Obligate Intracellular Microbes. Molecular Biology and Evolution, 2007, 24, 449-456.	8.9	37
133	A T7 RNA polymerase-based system for the construction of Pseudomonas strains with phenotypes dependent on TOL-meta pathway effectors. Gene, 1993, 134, 103-106.	2.2	36
134	[26] Approach to analyze interactions of microorganisms, hydrophobic substrates, and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. Methods in Enzymology, 2001, 336, 317-IN14.	1.0	36
135	Niche-specificity factors of a marine oil-degrading bacterium <i>Alcanivorax borkumensis</i> SK2. FEMS Microbiology Letters, 2008, 285, 89-96.	1.8	36
136	Conversion of a Carboxylesterase into a Triacylglycerol Lipase by a Random Mutation. Angewandte Chemie - International Edition, 2005, 44, 7553-7557.	13.8	32
137	Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Applied Microbiology and Biotechnology, 2007, 75, 1275-1283.	3.6	32
138	Covalently closed circular DNA molecules of low superhelix density as intermediate forms in plasmid replication. Nature, 1976, 261, 512-516.	27.8	31
139	Broad-host range expression vectors containing manipulatedmeta-cleavage pathway regulatory elements of the TOL plasmid. FEBS Letters, 1988, 226, 241-246.	2.8	31
140	Muconolactone Isomerase of the 3-Oxoadipate Pathway Catalyzes Dechlorination of 5-Chloro-Substituted Muconolactones. FEBS Journal, 1996, 237, 350-356.	0.2	30
141	The contribution of microbial biotechnology to economic growth and employment creation. Microbial Biotechnology, 2017, 10, 1137-1144.	4.2	30
142	<scp>SARSâ€CoV</scp> â€2 biology and variants: anticipation of viral evolution and what needs to be done. Environmental Microbiology, 2021, 23, 2339-2363.	3.8	30
143	Colonization factor antigen II (CFA/II) of enterotoxigenic Escherichia coli: molecular cloning of the CS3 determinant. Molecular Genetics and Genomics, 1985, 200, 322-327.	2.4	29
144	Isolation of Covalently Closed Circular Deoxyribonucleic Acid from Bacteria Which Produce Exocellular Nuclease. Journal of Bacteriology, 1973, 113, 508-509.	2.2	29

#	Article	IF	CITATIONS
145	Gene dosage studies with pleiotropic mutants of Serratia marcescens superactive in the synthesis of marcescin A and certain other exocellular proteins. Molecular Genetics and Genomics, 1973, 124, 207-217.	2.4	28
146	Consortia modulation of the stress response: proteomic analysis of single strain versus mixed culture. Environmental Microbiology, 2010, 12, 2436-2449.	3.8	28
147	The organization of the Pm promoter of the TOL plasmid reflects the structure of its cognate activator protein XylS. Molecular Genetics and Genomics, 1994, 244, 596-605.	2.4	27
148	Behavior of Pollutant-Degrading Microorganisms in Aquifers: Predictions for Genetically Engineered Organisms. Environmental Science & Technology, 1994, 28, 1134-1138.	10.0	27
149	A purple acidophilic di-ferric DNA ligase from <i>Ferroplasma</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8878-8883.	7.1	27
150	<scp>COVID</scp> â€19: long covid and its societal consequences. Environmental Microbiology, 2021, 23, 4077-4091.	3.8	27
151	Detoxification of Protoanemonin by Dienelactone Hydrolase. Journal of Bacteriology, 1998, 180, 400-402.	2.2	27
152	Extracellular export of Shiga toxin B-subunit/ haemolysin A (C-terminus) fusion protein expressed in Salmonella typhimurium aroA-mutant and stimulation of B-subunit specific antibody responses in mice. Microbial Pathogenesis, 1992, 13, 465-476.	2.9	26
153	Temperature dependent expression of an acid phosphatase byBordetella bronchiseptica: role in intracellular survival. Microbial Pathogenesis, 1997, 22, 257-264.	2.9	26
154	A gene containment strategy based on a restriction-modification system. Environmental Microbiology, 2000, 2, 555-563.	3.8	26
155	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
156	XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Molecular Genetics and Genomics, 1992, 235, 406-412.	2.4	24
157	A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa. Journal of Bacteriology, 2015, 197, 3066-3075.	2.2	24
158	Towards a vaccine candidate againstShigella dysenteriae1: expression of the Shiga toxin B-subunit in an attenuatedShigella flexneri aroDcarrier strain. Microbial Pathogenesis, 1996, 21, 277-288.	2.9	23
159	A stringently controlled expression system for analysing lateral gene transfer between bacteria. Molecular Microbiology, 1996, 21, 293-300.	2.5	23
160	ColD-derived cloning vectors that autoamplify in the stationary phase of bacterial growth. Gene, 1985, 35, 103-111.	2.2	22
161	Expression of the Shigella dysenteriae type-1 lipopolysaccharide repeating unit in Escherichia coli K12/Shigella dysenteriae type-1 hybrids. FEBS Journal, 1993, 213, 573-581.	0.2	22
162	Accumulation of 2-chloromuconate during metabolism of 3-chlorobenzoate by Alcaligenes eutrophus JMP134. Applied Microbiology and Biotechnology, 1993, 39, 563-567.	3.6	20

#	Article	IF	CITATIONS
163	SARS oV â€2 variants: Relevance for symptom granularity, epidemiology, immunity (herd, vaccines), virus origin and containment?. Environmental Microbiology, 2020, 22, 2001-2006.	3.8	20
164	Instability of plasmid DNA sequences: Macro and micro evolution of the antibiotic resistance plasmid R6-5. Molecular Genetics and Genomics, 1978, 167, 11-19.	2.4	19
165	The Essential HupB and HupN Proteins of Pseudomonas putida Provide Redundant and Nonspecific DNA-bending Functions. Journal of Biological Chemistry, 2001, 276, 16641-16648.	3.4	18
166	High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiology Ecology, 2008, 65, 526-533.	2.7	18
167	The <scp>DIY</scp> Digital Medical Centre. Microbial Biotechnology, 2017, 10, 1084-1093.	4.2	18
168	Stimulation of secretory antibodies against Bordetella pertussis antigens in the lungs of mice after oral or intranasal administration of liposome-incorporated cell-surface antigens. Microbial Pathogenesis, 1993, 14, 149-160.	2.9	17
169	Pristine but metal-rich RÃo Sucio (Dirty River) is dominated by Gallionella and other iron-sulfur oxidizing microbes. Extremophiles, 2017, 21, 235-243.	2.3	17
170	Synthetic consortia of nanobodyâ€coupled and formatted bacteria for prophylaxis and therapy interventions targeting microbiome dysbiosisâ€associated diseases and coâ€morbidities. Microbial Biotechnology, 2019, 12, 58-65.	4.2	17
171	Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone. Gene, 1998, 206, 53-62.	2.2	16
172	Novel Hybrid Esteraseâ€Haloacid Dehalogenase Enzyme. ChemBioChem, 2010, 11, 1975-1978.	2.6	16
173	Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environmental Microbiology, 2014, 16, 9-18.	3.8	16
174	Identification of Salmonella typhi promoters activated by invasion of eukaryotic cells. Molecular Microbiology, 1995, 18, 891-902.	2.5	15
175	Leitbakteria of microbial biofilm communities causing occlusion of biliary stents. Environmental Microbiology, 2003, 5, 859-866.	3.8	15
176	Bacterial consortium proteomics under 4â€chlorosalicylate carbonâ€limiting conditions. Proteomics, 2009, 9, 2273-2285.	2.2	14
177	The urgent need for microbiology literacy in society: children as educators. Microbial Biotechnology, 2020, 13, 1300-1303.	4.2	14
178	The darkest microbiome—a postâ€human biosphere. Microbial Biotechnology, 2022, 15, 176-185.	4.2	14
179	Multifunctional g3p-peptide tag for current phage display systems. Journal of Immunological Methods, 1998, 212, 131-138.	1.4	13
180	Use of Subtractive Hybridization To Design Habitat-Based Oligonucleotide Probes for Investigation of Natural Bacterial Communities. Applied and Environmental Microbiology, 1998, 64, 185-191.	3.1	11

#	Article	IF	CITATIONS
181	Construction and characterization of genetically-marked bivalent anti-Shigella dysenteriae1 and anti-Shigella flexneriY live vaccine candidates. Microbial Pathogenesis, 1997, 22, 363-376.	2.9	10
182	Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 715-721.	3.0	10
183	Fate of prions in soil: Degradation of recombinant prion in aqueous extracts from soil and casts of two earthworm species. Soil Biology and Biochemistry, 2010, 42, 1168-1171.	8.8	10
184	Ecology and industrial microbiology Strange bedfellows. Current Opinion in Microbiology, 1998, 1, 267-270.	5.1	8
185	Upstream-independent ribosomal RNA amplification analysis (URA): a new approach to characterizing the diversity of natural microbial communities. Environmental Microbiology, 2001, 3, 662-666.	3.8	8
186	Plasmid replication functions. IV. Promoters in the replication region of plasmid R6–5. Nucleic Acids Research, 1979, 7, 1469-1484.	14.5	7
187	Construction of recombinantaroAsalmonellae stably producing theShigella dysenteriaeserotype 1 O-antigen and structural characterization of theSalmonella/Shigellahybrid LPS. Microbial Pathogenesis, 1996, 20, 11-30.	2.9	7
188	The contribution of microbiology toward attainment of sustainable development goals: the need to conserve soil health while maximizing its productivity. Environmental Microbiology Reports, 2020, 13, 425-427.	2.4	7
189	Genetic requirements for the expression of benzylamine dehydrogenase activity in Pseudomonas putida. FEMS Microbiology Letters, 1998, 166, 109-114.	1.8	6
190	Microbial biotechnology to assure national security of supplies of essential resources: energy, food and water, medical reagents, waste disposal and a circular economy. Microbial Biotechnology, 2022, 15, 1021-1025.	4.2	6
191	A routine checkâ€up at the digital medical centre. Microbial Biotechnology, 2017, 10, 25-27.	4.2	3
192	Microbiome Yarns: human milk oligosaccharides, <i>Bifidobacterium</i> and immunopowergames1,2,3,4. Microbial Biotechnology, 2018, 11, 437-441.	4.2	3
193	Environmental microbiology – the next 20 years: bioconnectivity and meta'omics 2.0. Environmental Microbiology, 2018, 20, 1949-1954.	3.8	3
194	Environmental Microbiology is 20!. Environmental Microbiology, 2018, 20, 1936-1944.	3.8	3
195	COVID â€19 transmission: economyâ€boosting investment should target innovation in pandemic containment strategies to minimize restrictions of civil liberties. Environmental Microbiology, 2020, 22, 4527-4531.	3.8	3
196	Expression of Bordetella pertussis filamentous hemagglutinin in Escherichia coli using a two cistron system. Microbial Pathogenesis, 1992, 12, 383-389.	2.9	2
197	Environmental biotechnology: Editorial overview. Current Opinion in Biotechnology, 1992, 3, 225-226.	6.6	2
198	Biological land mines: bioterrorism underscores major knowledge deficits in the ecology of infectious agents. Environmental Microbiology, 2001, 3, 741-742.	3.8	2

#	Article	IF	CITATIONS
199	<i>Environmental Microbiology Reports</i> is 10!. Environmental Microbiology Reports, 2018, 10, 5-6.	2.4	2
200	Microbiome Yarns: microbiome of the built environment, paranormal microbiology, and the power of single cell genomics1,2,3,4. Microbial Biotechnology, 2018, 11, 575-587.	4.2	2
201	Strategies to minimize preventable morbidity and mortality resulting from pandemics like COVID â€19. Environmental Microbiology, 2020, 22, 4085-4092.	3.8	2
202	Bacterial <scp>tRNA</scp> landscape revisited. Environmental Microbiology, 2022, , .	3.8	2
203	Golden age of drug discovery or dark age of missed chances?. Environmental Microbiology, 2005, 7, 1861-1863.	3.8	1
204	Human biome biotechnology and the personalization of odour profiles*. Microbial Biotechnology, 2009, 2, 150-152.	4.2	1
205	Microbiome yarns: microbiomology of curly and straight hair. Microbial Biotechnology, 2017, 10, 231-237.	4.2	1
206	Microbiome yarns: microbial forensics for auditing provenance in global food chains [,] [,] [,] . Microbial Biotechnology, 2017, 10, 678-682.	4.2	1
207	<i>Microbial Biotechnology</i> is 10!. Microbial Biotechnology, 2017, 10, 1277-1278.	4.2	1
208	Microbiome Yarns: human biome reproduction, evolution and visual acuity,,,. Microbial Biotechnology, 2018, 11, 149-159.	4.2	1
209	Microbiome yarns: The Global Phenotypeâ€Genotype Survey. Episode <scp>III</scp> : importance of microbiota diversification for microbiome function and biome health. Microbial Biotechnology, 2019, 12, 421-433.	4.2	1
210	Microbiome yarns: the Global Phenotype–Genotype Survey. Microbial Biotechnology, 2019, 12, 191-199.	4.2	1
211	Microbiome yarns: The Global Phenotype-Genotype Survey. Microbial Biotechnology, 2019, 12, 11-24.	4.2	1
212	The Home Clinic <i>or</i> All in a Day's Work of Dr. Fics. Microbial Biotechnology, 2020, 13, 3-10.	4.2	1
213	Multiple intertwined crises facing humanity necessitate a European Environmental Research Organization. Microbial Biotechnology, 2022, 15, 1031-1034.	4.2	1
214	Farewell to Bernard Witholt, A pioneering microbial biotechnologist. Microbial Biotechnology, 2015, 8, 621-622.	4.2	0
215	<scp>S</scp> ingh <scp>C</scp> hhatwal: A magical scholar and exceptional <scp><i>S</i></scp> <i>treptococcus</i> researcher. Environmental Microbiology Reports, 2016, 8, 550-552.	2.4	0
216	Microbiome yarns: microbiomology of winter rosy face [,] [,] [,] . Microbial Biotechnology, 2017, 10, 520-524.	4.2	0

#	Article	IF	CITATIONS
217	Microbiomes, metabolic errors and detection of performance enhancing drug abuse. Environmental Microbiology Reports, 2017, 9, 25-26.	2.4	0
218	Mikrobiologisches Wissen für alle bedeutet Klimaschutz!. BioSpektrum, 2019, 25, 595-595.	0.0	0
219	Microbiome transplants to save the planetary surface biosphere. Environmental Microbiology Reports, 2021, 13, 50-53.	2.4	0
220	Microbiome yarns: microbiome basis of memory,,,. Microbial Biotechnology, 2017, 10, 1283-1292.	4.2	0
221	Microbiome Yarns: bacterial predators, tissue tropism and molecular decoys. Microbial Biotechnology, 2021, 14, 51-58.	4.2	0
222	Microbial Biotechnology is 15! An adventure in journal parenting. Microbial Biotechnology, 2021, , .	4.2	0
223	Microbiomes, metabolic errors and detection of performance enhancing drug abuse ^{1,2} . Environmental Microbiology Reports, 2016, , .	2.4	Ο