Martin A Fascione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426206/publications.pdf

Version: 2024-02-01

516215 476904 857 34 16 29 citations g-index h-index papers 49 49 49 1236 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methodologies for "Wiring―Redox Proteins/Enzymes to Electrode Surfaces. Chemistry - A European Journal, 2018, 24, 12164-12182.	1.7	96
2	Site-selective incorporation and ligation of protein aldehydes. Organic and Biomolecular Chemistry, 2016, 14, 7622-7638.	1.5	80
3	Stereoselective glycosylation using oxathiane glycosyl donors. Chemical Communications, 2009, , 5841.	2.2	78
4	A Proteinâ€Based Pentavalent Inhibitor of the Cholera Toxin Bâ€Subunit. Angewandte Chemie - International Edition, 2014, 53, 8323-8327.	7.2	57
5	Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2016, 55, 4738-4742.	7.2	55
6	Do Glycosyl Sulfonium Ions Engage in Neighbouringâ€Group Participation? A Study of Oxathiane Glycosyl Donors and the Basis for their Stereoselectivity. Chemistry - A European Journal, 2012, 18, 321-333.	1.7	45
7	Pyrrolysine Amber Stopâ€Codon Suppression: Development and Applications. ChemBioChem, 2017, 18, 1973-1983.	1.3	38
8	Site-selective C–C modification of proteins at neutral pH using organocatalyst-mediated cross aldol ligations. Chemical Science, 2018, 9, 5585-5593.	3.7	33
9	Templating carbohydrate-functionalised polymer-scaffolded dynamic combinatorial libraries with lectins. Organic and Biomolecular Chemistry, 2015, 13, 2756-2761.	1.5	29
10	Mechanistic Studies on a Sulfoxide Transfer Reaction Mediated by Diphenyl Sulfoxide/Triflic Anhydride. Chemistry - A European Journal, 2012, 18, 2987-2997.	1.7	28
11	Stereoselective glycosylations using oxathiane spiroketal glycosyl donors. Carbohydrate Research, 2012, 348, 6-13.	1.1	27
12	Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry - A European Journal, 2016, 22, 3916-3928.	1.7	26
13	Molecular Recognitionâ€Mediated Transformation of Singleâ€Chain Polymer Nanoparticles into Crosslinked Polymer Films. Angewandte Chemie - International Edition, 2017, 56, 12913-12918.	7.2	25
14	Benzyne arylation of oxathiane glycosyl donors. Beilstein Journal of Organic Chemistry, 2010, 6, 19.	1.3	23
15	Introducing affinity and selectivity into galectin-targeting nanoparticles with fluorinated glycan ligands. Chemical Science, 2021, 12, 905-910.	3.7	21
16	Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Organic and Biomolecular Chemistry, 2019, 17, 1817-1821.	1.5	15
17	Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chemical Biology, 2020, 27, 1199-1206.e5.	2.5	15
18	Developments in Mannoseâ€Based Treatments for Uropathogenic <i>Escherichia coli</i> أذاء â€Induced Urinary Tract Infections. ChemBioChem, 2021, 22, 613-629.	1.3	15

#	Article	IF	CITATIONS
19	Reconstitution and optimisation of the biosynthesis of bacterial sugar pseudaminic acid (Pse5Ac7Ac) enables preparative enzymatic synthesis of CMP-Pse5Ac7Ac. Scientific Reports, 2021, 11, 4756.	1.6	14
20	Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Organic and Biomolecular Chemistry, 2020, 18, 799-809.	1.5	13
21	Palladium-unleashed proteins: gentle aldehyde decaging for site-selective protein modification. Chemical Communications, 2018, 54, 1501-1504.	2.2	12
22	Aldehyde-Mediated Protein-to-Surface Tethering via Controlled Diazonium Electrode Functionalization Using Protected Hydroxylamines. Langmuir, 2020, 36, 5654-5664.	1.6	11
23	Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides. ACS Catalysis, 2020, 10, 9986-9993.	5.5	10
24	Synthetic Approaches for Accessing Pseudaminic Acid (Pse) Bacterial Glycans. ChemBioChem, 2020, 21, 1397-1407.	1.3	10
25	Ionisation bias undermines the use of matrixâ€assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios. Rapid Communications in Mass Spectrometry, 2019, 33, 1049-1057.	0.7	9
26	The characterisation of a galactokinase from Streptomyces coelicolor. Carbohydrate Research, 2019, 472, 132-137.	1.1	8
27	Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation. Organic and Biomolecular Chemistry, 2020, 18, 4000-4003.	1.5	8
28	Chemoenzymatic synthesis of 3-deoxy-3-fluoro- <scp>l</scp> -fucose and its enzymatic incorporation into glycoconjugates. Chemical Communications, 2020, 56, 6408-6411.	2.2	8
29	Molecular Recognitionâ€Mediated Transformation of Singleâ€Chain Polymer Nanoparticles into Crosslinked Polymer Films. Angewandte Chemie, 2017, 129, 13093-13098.	1.6	3
30	A Tale of Two Bioconjugations: pH Controlled Divergent Reactivity of Protein α-oxo-Aldehydes in Competing α-oxo-Mannich and Catalyst-Free Aldol Ligations. ACS Chemical Biology, 2021, 16, 2387-2400.	1.6	3
31	Chemical Bioconjugation of Proteins in an Undergraduate Lab: One-Pot Oxidation and Derivatization of the N-Terminus. Journal of Chemical Education, 2019, 96, 1245-1249.	1.1	2
32	Innentitelbild: A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit (Angew. Chem.) Tj ETQq0 0	0 rgBT /O\	verlack 10 Tf 5
33	Rù⁄4cktitelbild: Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein–Ligand Interactions (Angew. Chem. 15/2016). Angewandte Chemie, 2016, 128, 4920-4920.	1.6	0
34	Frontispiece: Methodologies for "Wiring―Redox Proteins/Enzymes to Electrode Surfaces. Chemistry - A European Journal, 2018, 24, .	1.7	0