Jayakumar Rangasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426194/publications.pdf

Version: 2024-02-01

259 papers 23,945 citations

7096 78 h-index 146

g-index

302 all docs 302 docs citations

times ranked

302

23609 citing authors

#	Article	IF	CITATIONS
1	Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011, 29, 322-337.	11.7	1,572
2	Biomedical applications of chitin and chitosan based nanomaterialsâ€"A short review. Carbohydrate Polymers, 2010, 82, 227-232.	10.2	1,085
3	Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010, 28, 142-150.	11.7	868
4	Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 2014, 39, 1644-1667.	24.7	780
5	Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In Vitro and In Vivo Evaluation. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2618-2629.	8.0	670
6	Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 2007, 40, 175-181.	7.5	605
7	Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. International Journal of Biological Macromolecules, 2011, 49, 247-254.	7.5	461
8	Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010, 55, 675-709.	32.8	454
9	Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 2011, 84, 1158-1164.	10.2	417
10	Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering Journal, 2010, 158, 353-361.	12.7	354
11	Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 807-813.	3.6	345
12	Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydrate Polymers, 2009, 78, 672-677.	10.2	342
13	Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2010, 80, 687-694.	10.2	317
14	Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers, 2018, 198, 385-400.	10.2	306
15	Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydrate Polymers, 2011, 83, 452-461.	10.2	302
16	Preparation and characterization of novel \hat{l}^2 -chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers, 2010, 80, 761-767.	10.2	281
17	An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015, 72, 543-565.	5.4	280
18	Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers, 2010, 79, 1-8.	10.2	273

#	Article	IF	CITATIONS
19	Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 2009, 77, 863-869.	10.2	255
20	Chitosanâ€"hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. International Journal of Biological Macromolecules, 2013, 62, 310-320.	7.5	238
21	Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydrate Polymers, 2012, 87, 274-283.	10.2	233
22	An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1338-1353.	7.5	225
23	Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4, 239-250.	5.6	224
24	Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. Journal of Colloid and Interface Science, 2011, 360, 39-51.	9.4	220
25	Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydrate Polymers, 2010, 80, 833-838.	10.2	204
26	Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers, 2009, 76, 255-260.	10.2	198
27	Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700612.	7.6	193
28	Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials, 2018, 3, 267-277.	15.6	181
29	Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydrate Polymers, 2010, 80, 442-448.	10.2	175
30	Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers, 2010, 79, 284-289.	10.2	172
31	Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 59, 255-263.	7.5	165
32	Chitin Scaffolds in Tissue Engineering. International Journal of Molecular Sciences, 2011, 12, 1876-1887.	4.1	162
33	Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydrate Polymers, 2011, 83, 776-786.	10.2	159
34	Preparative methods of phosphorylated chitin and chitosanâ€"An overview. International Journal of Biological Macromolecules, 2008, 43, 221-225.	7.5	158
35	Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids and Surfaces B: Biointerfaces, 2015, 127, 105-113.	5.0	155
36	Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydrate Polymers, 2011, 83, 66-73.	10.2	152

#	Article	IF	CITATIONS
37	Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 45, 12-15.	7.5	151
38	Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. International Journal of Biological Macromolecules, 2012, 51, 392-399.	7.5	150
39	Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules, 2011, 49, 161-172.	7.5	149
40	Evaluation of Wound Healing Potential of \hat{l}^2 -Chitin Hydrogel/Nano Zinc Oxide Composite Bandage. Pharmaceutical Research, 2013, 30, 523-537.	3.5	145
41	Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. International Journal of Biological Macromolecules, 2011, 48, 571-576.	7.5	143
42	Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 62, 465-471.	7.5	141
43	Smart Stimuli Sensitive Nanogels in Cancer Drug Delivery and Imaging: A Review. Current Pharmaceutical Design, 2013, 19, 7203-7218.	1.9	140
44	Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2730-2743.	2.4	140
45	Curcumin-Loaded $\langle i \rangle N \langle i \rangle$, $\langle i \rangle O \langle i \rangle$ -Carboxymethyl Chitosan Nanoparticles for Cancer Drug Delivery. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1381-1400.	3.5	135
46	Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydrate Polymers, 2010, 79, 1073-1079.	10.2	134
47	In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 238-251.	4.3	134
48	Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules, 2011, 48, 336-344.	7.5	131
49	Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9399-9409.	8.0	127
50	Role of Nanofibrous Poly(Caprolactone) Scaffolds in Human Mesenchymal Stem Cell Attachment and Spreading for∢i>In Vitro∢/i>Bone Tissue Engineeringâ€"Response to Osteogenic Regulators. Tissue Engineering - Part A, 2010, 16, 393-404.	3.1	125
51	Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers, 2011, 84, 820-824.	10.2	125
52	Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydrate Polymers, 2016, 153, 492-500.	10.2	124
53	Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 44, 1-5.	7.5	122
54	Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules, 2009, 45, 289-292.	7.5	117

#	Article	IF	Citations
55	Development of novel α-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2009, 78, 926-931.	10.2	113
56	Chitosan-graft- \hat{l}^2 -cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. International Journal of Biological Macromolecules, 2009, 44, 320-325.	7.5	113
57	Tri‣ayered Nanocomposite Hydrogel Scaffold for the Concurrent Regeneration of Cementum, Periodontal Ligament, and Alveolar Bone. Advanced Healthcare Materials, 2017, 6, 1601251.	7.6	111
58	Synthesis of phosphorylated chitosan by novel method and its characterization. International Journal of Biological Macromolecules, 2008, 42, 335-339.	7.5	109
59	Chitosan–hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydrate Polymers, 2013, 92, 1470-1476.	10.2	108
60	Nanogels for delivery, imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 509-533.	6.1	108
61	Novel biodegradable chitin membranes for tissue engineering applications. Carbohydrate Polymers, 2008, 73, 295-302.	10.2	107
62	\hat{l}^2 -Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 85, 584-591.	10.2	107
63	Synthesis and Biological Evaluation of Chitin Hydrogel/Nano ZnO Composite Bandage as Antibacterial Wound Dressing. Journal of Biomedical Nanotechnology, 2012, 8, 891-900.	1.1	107
64	Effect of Incorporation of Nanoscale Bioactive Glass and Hydroxyapatite in PCL/Chitosan Nanofibers for Bone and Periodontal Tissue Engineering. Journal of Biomedical Nanotechnology, 2013, 9, 430-440.	1.1	105
65	Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydrate Polymers, 2013, 91, 48-57.	10.2	102
66	O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydrate Polymers, 2012, 89, 1003-1007.	10.2	98
67	Fabrication of chitin–chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules, 2011, 49, 274-280.	7.5	97
68	Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels. Materials, 2014, 7, 3946-3955.	2.9	97
69	Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. International Journal of Biological Macromolecules, 2015, 74, 318-326.	7.5	96
70	Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydrate Polymers, 2013, 93, 661-669.	10.2	92
71	Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opinion on Drug Delivery, 2016, 13, 1177-1194.	5.0	91
72	Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1012-1018.	2.2	90

#	Article	IF	Citations
73	Multifunctional Chitin Nanogels for Simultaneous Drug Delivery, Bioimaging, and Biosensing. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3654-3665.	8.0	88
74	Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohydrate Polymers, 2012, 87, 2352-2356.	10.2	88
75	Fabrication of poly (I-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. International Journal of Biological Macromolecules, 2015, 72, 1048-1055.	7.5	88
76	Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydrate Polymers, 2011, 84, 407-416.	10.2	87
77	Synthesis and Characterization of pH-Sensitive Thiol-Containing Chitosan Beads for Controlled Drug Delivery Applications. Drug Delivery, 2007, 14, 9-17.	5.7	85
78	Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 97-109.	4.3	85
79	Synthesis, characterization and bioactivity studies of novel β-chitin scaffolds for tissue-engineering applications. International Journal of Biological Macromolecules, 2008, 42, 463-467.	7.5	80
80	Anti-staphylococcal Activity of Injectable Nano Tigecycline/Chitosan-PRP Composite Hydrogel Using <i>Drosophila melanogaster</i> Model for Infectious Wounds. ACS Applied Materials & Drosophila Materials & D	8.0	80
81	Chitosan–hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chemical Engineering Journal, 2015, 260, 478-485.	12.7	79
82	Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydrate Polymers, 2008, 73, 456-463.	10.2	76
83	Versatile carboxymethyl chitin and chitosan nanomaterials: a review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 574-598.	6.1	76
84	Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. Colloids and Surfaces B: Biointerfaces, 2018, 161, 129-138.	5.0	75
85	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772.	24.7	74
86	Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. International Journal of Biological Macromolecules, 2018, 110, 227-233.	7.5	74
87	Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 122, 320-328.	7.5	74
88	A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydrate Polymers, 2011, 84, 887-893.	10.2	73
89	Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. International Journal of Biological Macromolecules, 2019, 129, 936-943.	7. 5	7 3
90	Embedded Silica Nanoparticles in Poly(Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 1867-1881.	3.1	72

#	Article	IF	Citations
91	5-Flourouracil Loaded <i>N,O</i> -Carboxymethyl Chitosan Nanoparticles as an Anticancer Nanomedicine for Breast Cancer. Journal of Biomedical Nanotechnology, 2012, 8, 29-42.	1.1	71
92	Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids and Surfaces B: Biointerfaces, 2017, 160, 40-47.	5.0	70
93	Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. International Journal of Biological Macromolecules, 2009, 44, 107-111.	7.5	67
94	Bioactive and osteoblast cell attachment studies of novel \hat{l}_{\pm} - and \hat{l}^2 -chitin membranes for tissue-engineering applications. International Journal of Biological Macromolecules, 2009, 45, 260-264.	7.5	66
95	In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 104, 245-253.	5.0	65
96	Synthesis, characterization and cytocompatibility studies of \hat{l}_{\pm} -chitin hydrogel/nano hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules, 2011, 49, 20-31.	7.5	63
97	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of Microporous Chitosan Hydrogel/Nanofibrin Composite Bandage for Skin Tissue Regeneration. Tissue Engineering - Part A, 2013, 19, 380-392.	3.1	63
98	Bioadhesive, Hemostatic, and Antibacterial <i>in Situ</i> Chitin–Fibrin Nanocomposite Gel for Controlling Bleeding and Preventing Infections at Mediastinum. ACS Sustainable Chemistry and Engineering, 2018, 6, 7826-7840.	6.7	62
99	Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. Journal of Drug Delivery Science and Technology, 2019, 49, 463-476.	3.0	62
100	Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2013, 106, 109-116.	5.0	61
101	Synthesis, characterization and thermal properties of chitin-g-poly(É>-caprolactone) copolymers by using chitin gel. International Journal of Biological Macromolecules, 2008, 43, 32-36.	7.5	60
102	Methotrexate in the Treatment of Psoriasis and Rheumatoid Arthritis: Mechanistic Insights, Current Issues and Novel Delivery Approaches. Current Pharmaceutical Design, 2017, 23, 3550-3566.	1.9	60
103	Synthesis and Characterization of Chitosan/Chondroitin Sulfate/Nano-SiO ₂ Composite Scaffold for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2012, 8, 149-160.	1.1	59
104	Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. European Journal of Pharmaceutical Sciences, 2017, 96, 193-206.	4.0	59
105	Synthesis, characterization and in vitro cytocompatibility studies of chitin nanogels for biomedical applications. Carbohydrate Polymers, 2012, 87, 943-949.	10.2	58
106	Composite hydrogel of chitosan–poly(hydroxybutyrate- co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 136, 84-92.	5.0	58
107	Injectable Shear-Thinning CaSO ₄ /FGF-18-Incorporated Chitin–PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42639-42652.	8.0	56
108	Flexible, micro-porous chitosan–gelatin hydrogel/nanofibrin composite bandages for treating burn wounds. RSC Advances, 2014, 4, 65081-65087.	3.6	54

#	Article	IF	Citations
109	Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International Journal of Nanomedicine, 2015, 10 Suppl 1, 53.	6.7	53
110	Injectable Nano Whitlockite Incorporated Chitosan Hydrogel for Effective Hemostasis. ACS Applied Bio Materials, 2019, 2, 865-873.	4.6	53
111	5-Fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications. International Journal of Biological Macromolecules, 2011, 48, 98-105.	7.5	52
112	Functionalised gold nanoparticles for selective induction of <i>inÂvitro </i> apoptosis among human cancer cell lines. Journal of Experimental Nanoscience, 2013, 8, 32-45.	2.4	51
113	Surface Plasma Treatment of Poly(caprolactone) Micro, Nano, and Multiscale Fibrous Scaffolds for Enhanced Osteoconductivity. Tissue Engineering - Part A, 2014, 20, 1689-1702.	3.1	51
114	Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomedical Materials (Bristol), 2016, 11, 035017.	3.3	51
115	Bioglass-Incorporated Methacrylated Gelatin Cryogel for Regeneration of Bone Defects. Polymers, 2018, 10, 914.	4.5	51
116	Ciprofloxacin- and Fluconazole-Containing Fibrin-Nanoparticle-Incorporated Chitosan Bandages for the Treatment of Polymicrobial Wound Infections. ACS Applied Bio Materials, 2019, 2, 243-254.	4.6	51
117	Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract. Carbohydrate Polymers, 2012, 87, 1787-1795.	10.2	50
118	Hyaluronic Acid-Based Conjugates for Tumor-Targeted Drug Delivery and Imaging. Journal of Biomedical Nanotechnology, 2014, 10, 17-31.	1.1	48
119	<l>A Special Issue on</l> Polymer Conjugate Based Nanotherapeutics. Journal of Biomedical Nanotechnology, 2014, 10, 1-3.	1.1	48
120	Fluconazole Loaded Chitin Nanogels as a Topical Ocular Drug Delivery Agent for Corneal Fungal Infections. Journal of Biomedical Nanotechnology, 2013, 9, 1521-1531.	1.1	47
121	Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2080-2090.	2.4	47
122	Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydrate Polymers, 2016, 142, 240-249.	10.2	47
123	Fabrication of chitin/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohydrate Polymers, 2012, 90, 725-729.	10.2	46
124	Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. International Journal of Biological Macromolecules, 2013, 62, 35-43.	7.5	46
125	Combinatorial nanomedicines for colon cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 151-159.	6.1	46
126	Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 177, 41-49.	5.0	46

#	Article	IF	CITATIONS
127	Fabrication of Aligned Poly(Lactic Acid)-Chitosan Nanofibers by Novel Parallel Blade Collector Method for Skin Tissue Engineering. Journal of Biomedical Nanotechnology, 2012, 8, 405-416.	1.1	45
128	Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioactive Materials, 2018, 3, 194-200.	15.6	45
129	Synthesis and Anti-Staphylococcal Activity of TiO ₂ Nanoparticles and Nanowires in <l>Ex Vivo</l> Porcine Skin Model. Journal of Biomedical Nanotechnology, 2014, 10, 864-870.	1.1	44
130	Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. International Journal of Biological Macromolecules, 2018, 110, 133-139.	7.5	44
131	Studies on metal-containing copolyurethanes. Reactive and Functional Polymers, 2003, 55, 267-276.	4.1	43
132	Fabrication of alginate/nanoTiO2 needle composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 83, 858-864.	10.2	43
133	<i>In vitro</i> targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine, 2012, 7, 507-519.	3.3	43
134	Antibacterial and Bioactive <l>l±</l> - and <l>l²</l> -Chitin Hydrogel/Nanobioactive Glass Ceramic/Nano Silver Composite Scaffolds for Periodontal Regeneration. Journal of Biomedical Nanotechnology, 2013, 9, 1803-1816.	1.1	43
135	Nano-fibrin stabilized CaSO 4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & amp; osteogenesis. Carbohydrate Polymers, 2016, 140, 144-153.	10.2	43
136	Development of novel fibrinogen nanoparticles by two-step co-acervation method. International Journal of Biological Macromolecules, 2010, 47, 37-43.	7.5	42
137	Biocompatible and Antibacterial Nanofibrous Poly(<i>i\(\ti\)\(\pi\) caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 131-138.</i>	2.2	42
138	Silymarin Encapsulated Poly(D, L-lactic-co-glycolic acid) Nanoparticles: A Prospective Candidate for Prostate Cancer Therapy. Journal of Biomedical Nanotechnology, 2014, 10, 559-570.	1.1	42
139	Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. International Journal of Biological Macromolecules, 2014, 69, 532-541.	7.5	42
140	Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. International Journal of Biological Macromolecules, 2015, 74, 36-43.	7.5	42
141	Nanostrontium ranelate incorporated injectable hydrogel enhanced matrix production supporting chondrogenesis in vitro. Journal of Materials Chemistry B, 2016, 4, 4092-4103.	5.8	42
142	Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery. Advances in Polymer Science, 2011, , 241-262.	0.8	41
143	Actively Targeted Cetuximab Conjugated \hat{I}^3 -Poly(glutamic acid)-Docetaxel Nanomedicines for Epidermal Growth Factor Receptor Over Expressing Colon Cancer Cells. Journal of Biomedical Nanotechnology, 2014, 10, 1416-1428.	1.1	41
144	Radio frequency responsive nano-biomaterials for cancer therapy. Journal of Controlled Release, 2015, 204, 85-97.	9.9	41

#	Article	IF	Citations
145	Synthesis, characterization, and antibacterial activity of metal-containing polyurethanes. Journal of Applied Polymer Science, 2004, 91, 288-295.	2.6	40
146	Synthesis, characterization, and thermal properties of phosphorylated chitin for biomedical applications. Polymer Engineering and Science, 2009, 49, 844-849.	3.1	39
147	Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydrate Polymers, 2017, 162, 49-55.	10.2	39
148	<i>In Vitro</i> and <i>in Vivo</i> Evaluation of Osteoporosis Therapeutic Peptide PTH 1–34 Loaded PEGylated Chitosan Nanoparticles. Molecular Pharmaceutics, 2013, 10, 4159-4167.	4.6	38
149	Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids and Surfaces B: Biointerfaces, 2015, 127, 33-40.	5.0	38
150	Sequential layer-by-layer electrospinning of nano SrCO3/PRP loaded PHBV fibrous scaffold for bone tissue engineering. Composites Part B: Engineering, 2016, 99, 445-452.	12.0	38
151	Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020). International Journal of Biological Macromolecules, 2021, 184, 701-712.	7.5	38
152	Dual drug encapsulated thermo-sensitive fibrinogen-graft-poly (N-isopropyl acrylamide) nanogels for breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2014, 114, 209-217.	5.0	37
153	Preparation, characterization and efficacy of lysostaphin-chitosan gel against Staphylococcus aureus. International Journal of Biological Macromolecules, 2018, 110, 157-166.	7.5	37
154	Bioengineered Braided Micro–Nano (Multiscale) Fibrous Scaffolds for Tendon Reconstruction. ACS Biomaterials Science and Engineering, 2019, 5, 1476-1486.	5.2	37
155	Preparation, characterization, bioactive and cell attachment studies of α-chitin/gelatin composite membranes. International Journal of Biological Macromolecules, 2009, 44, 333-337.	7.5	36
156	Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. International Journal of Biological Macromolecules, 2015, 74, 249-262.	7.5	36
157	Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 761-770.	3.4	36
158	Bio-responsive chitin-poly(l-lactic acid) composite nanogels for liver cancer. Colloids and Surfaces B: Biointerfaces, 2014, 113, 394-402.	5.0	35
159	Periodontal Specific Differentiation of Dental Follicle Stem Cells into Osteoblast, Fibroblast, and Cementoblast. Tissue Engineering - Part C: Methods, 2015, 21, 1044-1058.	2.1	35
160	Breast Tumor Targetable Fe ₃ O ₄ Embedded Thermo-Responsive Nanoparticles for Radiofrequency Assisted Drug Delivery. Journal of Biomedical Nanotechnology, 2016, 12, 43-55.	1.1	35
161	Synthesis, Characterization and Preliminary <l>In Vitro</l> Evaluation of PTH 1-34 Loaded Chitosan Nanoparticles for Osteoporosis. Journal of Biomedical Nanotechnology, 2012, 8, 98-106.	1.1	34
162	In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. International Journal of Biological Macromolecules, 2021, 188, 501-511.	7.5	34

#	Article	IF	Citations
163	Fabrication of Chitin/Poly(butylene succinate)/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering. Polymers, 2014, 6, 2974-2984.	4.5	33
164	Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydrate Polymers, 2021, 258, 117634.	10.2	33
165	In Vitro and In Vivo Biological Evaluation of O-Carboxymethyl Chitosan Encapsulated Metformin Nanoparticles for Pancreatic Cancer Therapy. Pharmaceutical Research, 2014, 31, 3361-3370.	3.5	32
166	Carbohydrate-Based Nanogels as Drug and Gene Delivery Systems. Journal of Nanoscience and Nanotechnology, 2014, 14, 694-704.	0.9	32
167	Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels. RSC Advances, 2014, 4, 49547-49555.	3.6	32
168	Carboxymethylated É©-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabrata infections. International Journal of Biological Macromolecules, 2018, 110, 140-149.	7.5	32
169	Development of Alginate-Chitosan-Collagen Based Hydrogels for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 2015, 5, 458-464.	0.1	32
170	Preparation, Characterization and Cell Attachment Studies of Electrospun Multi-scale Poly(caprolactone) Fibrous Scaffolds for Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 21-30.	2.2	30
171	Synthesis, Characterization and Biological Activities of Curcumin Nanospheres. Journal of Biomedical Nanotechnology, 2014, 10, 238-250.	1.1	30
172	Drug loaded bi-layered sponge for wound management in hyperfibrinolytic conditions. Journal of Materials Chemistry B, 2015, 3, 5795-5805.	5.8	30
173	Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. International Journal of Biological Macromolecules, 2018, 109, 85-98.	7.5	30
174	Chitosan-Based Nanoparticles in Cancer Therapy. Advances in Polymer Science, 2011, , 55-91.	0.8	29
175	Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydrate Polymers, 2016, 136, 609-617.	10.2	29
176	Antimicrobial Drugs Encapsulated in Fibrin Nanoparticles for Treating Microbial Infested Wounds. Pharmaceutical Research, 2014, 31, 1338-1351.	3.5	28
177	Skin and muscle permeating antibacterial nanoparticles for treating <i>Staphylococcus aureus</i> infected wounds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 797-807.	3.4	28
178	Bioactive and metal uptake studies of carboxymethyl chitosan-graft-d-glucuronic acid membranes for tissue engineering and environmental applications. International Journal of Biological Macromolecules, 2009, 45, 135-139.	7.5	27
179	Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique. IET Nanobiotechnology, 2012, 6, 16.	3.8	27
180	Preparation of chitin nanogels containing nickel nanoparticles. Carbohydrate Polymers, 2013, 97, 469-474.	10.2	27

#	Article	lF	CITATIONS
181	Hierarchically Designed Electrospun Tubular Scaffolds for Cardiovascular Applications. Journal of Biomedical Nanotechnology, 2011, 7, 609-620.	1.1	26
182	Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold. Carbohydrate Polymers, 2013, 92, 1561-1565.	10.2	26
183	Enhanced Delivery System of Flutamide Loaded Chitosan-Dextran Sulphate Nanoparticles for Prostate Cancer. Journal of Biomedical Nanotechnology, 2013, 9, 335-347.	1.1	26
184	Multi Drug Loaded Thermo-Responsive Fibrinogen- <l>graft</l> -Poly(<l>N</l> -vinyl) Tj ETQq0 11, 392-402.	0 0 rgBT / 1.1	Overlock 10 26
185	Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture. International Journal of Biological Macromolecules, 2018, 112, 737-744.	7. 5	26
186	Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomaterials Science, 2021, 9, 2439-2453.	5.4	26
187	Synthesis and Characterization ofNâ€methylenephenyl Phosphonic Chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 271-275.	2.2	25
188	Poly (lactic acid)–chitosan–collagen composite nanofibers as substrates for blood outgrowth endothelial cells. International Journal of Biological Macromolecules, 2013, 58, 220-224.	7.5	25
189	Tunable pH and redox-responsive drug release from curcumin conjugated Î ³ -polyglutamic acid nanoparticles in cancer microenvironment. Colloids and Surfaces B: Biointerfaces, 2017, 159, 809-819.	5.0	25
190	Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro. International Journal of Biological Macromolecules, 2018, 110, 514-521.	7.5	25
191	Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles. Carbohydrate Polymers, 2017, 177, 67-76.	10.2	24
192	Chitosan hydrogel scaffold reinforced with twisted poly(I lactic acid) aligned microfibrous bundle to mimic tendon extracellular matrix. International Journal of Biological Macromolecules, 2019, 122, 37-44.	7. 5	24
193	Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing. ACS Applied Bio Materials, 2019, 2, 378-387.	4.6	24
194	Gold–chitin–manganese dioxide ternary composite nanogels for radio frequency assisted cancer therapy. RSC Advances, 2014, 4, 5819.	3.6	22
195	Injectable in Situ Shape-Forming Osteogenic Nanocomposite Hydrogel for Regenerating Irregular Bone Defects. ACS Applied Bio Materials, 2018, 1, 1037-1046.	4.6	22
196	Development of Mangifera indica leaf extract incorporated carbopol hydrogel and its antibacterial efficacy against Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2019, 178, 377-384.	5.0	22
197	Synthesis, Characterization and Biospecific Degradation Behavior of Sulfated Chitin. Macromolecular Symposia, 2008, 264, 163-167.	0.7	20
198	Electrospun continuous nanofibers based on a TiO2–ZnO–graphene composite. RSC Advances, 2013, 3, 25312.	3.6	20

#	Article	IF	Citations
199	In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. International Journal of Nanomedicine, 2017, Volume 12, 7165-7182.	6.7	20
200	Injectable chitosan-fibrin/nanocurcumin composite hydrogel for the enhancement of angiogenesis. Research on Chemical Intermediates, 2018, 44, 4873-4887.	2.7	20
201	In vivo anti-psoriatic activity, biodistribution, sub-acute and sub-chronic toxicity studies of orally administered methotrexate loaded chitin nanogel in comparison with methotrexate tablet. International Journal of Biological Macromolecules, 2018, 110, 259-268.	7.5	19
202	Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Engineering and Regenerative Medicine, 2020, 17, 123-140.	3.7	19
203	Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications. Journal of Functional Biomaterials, 2015, 6, 849-862.	4.4	18
204	Prolonged release of TGF- \hat{l}^2 from polyelectrolyte nanoparticle loaded macroporous chitin-poly(caprolactone) scaffold for chondrogenesis. International Journal of Biological Macromolecules, 2016, 93, 1402-1409.	7.5	18
205	Synthesis and coating characteristics of novel calcium-containing poly(urethane ethers). Journal of Applied Polymer Science, 2004, 92, 710-721.	2.6	17
206	Paclitaxel Loaded Fibrinogen Coated CdTe/ZnTe Core Shell Nanoparticles for Targeted Imaging and Drug Delivery to Breast Cancer Cells. Journal of Biomedical Nanotechnology, 2013, 9, 1657-1671.	1.1	17
207	Addition of lactoferrin and substance P in a chitin/PLGA-CaSO4 hydrogel for regeneration of calvarial bone defects. Materials Science and Engineering C, 2021, 126, 112172.	7.3	17
208	Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly ($\hat{l}\mu$ -caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. Materials Science and Engineering C, 2021, 127, 112206.	7.3	16
209	Developments in Metalâ€Containing Polyurethanes, Coâ€polyurethanes and Polyurethane Ionomers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 231-261.	2.2	15
210	Multiscale Fibrous Scaffolds in Regenerative Medicine. Advances in Polymer Science, 2011, , 1-20.	0.8	15
211	Process study, development and degradation behavior of different size scale electrospun poly(caprolactone) and poly(lactic acid) fibers. Journal of Polymer Research, 2018, 25, 1.	2.4	14
212	Antibacterial, anti-biofilm and angiogenic calcium sulfate-nano MgO composite bone void fillers for inhibiting Staphylococcus aureus infections. Colloids and Interface Science Communications, 2020, 39, 100332.	4.1	14
213	Recent developments in controlling sternal wound infection after cardiac surgery and measures to enhance sternal healing. Medicinal Research Reviews, 2021, 41, 709-724.	10.5	14
214	MnO2 nano/micro hybrids for supercapacitors: "Nano's Envy, Micro's pride― RSC Advances, 2014, 4, 15863-15869.	3.6	13
215	Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111991.	5.0	13
216	Chitosan-Based Biosensor Fabrication and Biosensing Applications. Advances in Polymer Science, 2021, , 233-255.	0.8	13

#	Article	IF	CITATIONS
217	Development of Small Diameter Fibrous Vascular Grafts with Outer Wall Multiscale Architecture to Improve Cell Penetration. Journal of Biomedical Nanotechnology, 2013, 9, 1299-1305.	1.1	12
218	Multifaceted chitin/poly(lactic-co-glycolic) acid composite nanogels. International Journal of Biological Macromolecules, 2014, 67, 279-288.	7.5	12
219	Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections. International Journal of Biological Macromolecules, 2018, 110, 2-6.	7. 5	12
220	Pro-angiogenic Molecules for Therapeutic Angiogenesis. Current Medicinal Chemistry, 2017, 24, 3413-3432.	2.4	12
221	PTH 1-34 Loaded Thiolated Chitosan Nanoparticles for Osteoporosis: Oral Bioavailability and Anabolic Effect on Primary Osteoblast Cells. Journal of Biomedical Nanotechnology, 2014, 10, 166-178.	1.1	11
222	Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery. International Journal of Biological Macromolecules, 2014, 63, 154-157.	7.5	11
223	Synthesis of electrospun silica nanofibers for protein/DNA binding. Materials Letters, 2016, 184, 5-8.	2.6	11
224	Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity. International Journal of Biological Macromolecules, 2018, 110, 124-132.	7.5	11
225	Nanocurcumin and arginine entrapped injectable chitosan hydrogel for restoration of hypoxia induced endothelial dysfunction. International Journal of Biological Macromolecules, 2021, 166, 471-482.	7.5	11
226	Accelerated Wound Healing Using Nanoparticles. , 2016, , 287-306.		10
227	Bone Tissue Engineering: Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering (Adv. Healthcare Mater. 23/2017). Advanced Healthcare Materials, 2017, 6, 1770120.	7.6	10
228	Controlled Delivery of Bioactive Molecules for the Treatment of Chronic Wounds. Current Pharmaceutical Design, 2017, 23, 3529-3537.	1.9	10
229	Synthesis and characterization of calcium-containing poly(urethane-urea)s. Journal of Applied Polymer Science, 2003, 90, 3488-3496.	2.6	9
230	Studies on calcium-containing poly(urethane ether)s. Journal of Polymer Science Part A, 2003, 41, 2865-2878.	2.3	8
231	Calcium-containing poly(urethane-urea)s: Synthesis, spectral, and thermal studies. Journal of Polymer Science Part A, 2004, 42, 1809-1819.	2.3	8
232	High Thick Layer-by-Layer 3D Multiscale Fibrous Scaffolds for Enhanced Cell Infiltration and It's Potential in Tissue Engineering. Journal of Biomedical Nanotechnology, 2013, 9, 2117-2122.	1.1	8
233	Manganese doped nano-bioactive glass for magnetic resonance imaging. Materials Letters, 2015, 160, 335-338.	2.6	8
234	Antiseptic chitosan bandage for preventing topical skin infections. International Journal of Biological Macromolecules, 2021, 193, 1653-1658.	7.5	8

#	Article	IF	CITATIONS
235	Characterization of chitosan matters. , 2017, , 81-114.		7
236	Perspectives and Challenges of Using Chitosan in Various Biological Applications. Advances in Polymer Science, 2021, , 1-22.	0.8	7
237	Studies on Metalâ€Containing Coâ€polyurethanes Based on Mono(hydroxyethoxyethyl)phthalate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 945-954.	2.2	6
238	Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics. Advances in Polymer Science, 2012, , 203-239.	0.8	6
239	Nanoengineered biomaterials for tendon/ligament regeneration. , 2019, , 73-93.		6
240	Synthesis-Structure Relationship of Chitosan Based Hydrogels. Advances in Polymer Science, 2021, , 105-129.	0.8	6
241	Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering. Springer Series on Polymer and Composite Materials, 2016, , 99-121.	0.7	5
242	Functionalized Antibacterial Nanoparticles for Controlling Biofilm and Intracellular Infections. , 2019, , 183-206.		5
243	One Pot Green Synthesis of Iron Oxide Nanoparticles by <i>O</i> -carboxymethyl Chitosan Assisted Hydrothermal Method. Journal of Chitin and Chitosan Science, 2013, 1, 76-85.	0.3	5
244	Preparation of Chitinous Compound/Gelatin Composite and Their Biological Application. Macromolecular Symposia, 2008, 264, 8-12.	0.7	4
245	Recent developments in drug-eluting dressings for the treatment of chronic wounds. Expert Opinion on Drug Delivery, 2016, 13, 1645-1647.	5.0	4
246	Biological macromolecules for tissue regeneration. International Journal of Biological Macromolecules, 2016, 93, 1337.	7.5	4
247	Bioinspired inorganic nanoparticles and vascular factor microenvironment directed neo-bone formation. Biomaterials Science, 2020, 8, 2627-2637.	5.4	4
248	Different Forms of Chitosan and Its Derivatives as Hemostatic Agent and Tissue Sealants. Advances in Polymer Science, 2021, , 1-28.	0.8	4
249	Colistimethate sodium-chitosan hydrogel for treating Gram-negative bacterial wound infections. International Journal of Biological Macromolecules, 2022, 214, 610-616.	7.5	4
250	Application of Chitosan and Its Derivatives in Transdermal Drug Delivery. Advances in Polymer Science, 2021, , 411-446.	0.8	2
251	Fabrication of Multifunctional $<1>\hat{1}^2$ -Chitin Nanogels as a Theragnostic Nanomedicine. Journal of Chitin and Chitosan Science, 2013, 1, 71-75.	0.3	2
252	Effects of Chitosan Derivatives on Plant Growth and Ni Uptake in Ricinus Communis and Helianthus Annuus. Journal of Chitin and Chitosan Science, 2013, 1, 65-70.	0.3	2

#	Article	IF	CITATIONS
253	Targeted nanoparticles for treating infectious diseases. , 2019, , 169-185.		1
254	Chitosan Based Biomaterials for Periodontal Therapy. Advances in Polymer Science, 2021, , 163-189.	0.8	1
255	Chitosan Sponge Containing the Herb Coleus Plectranthus as a Wound Dressing. Journal of Chitin and Chitosan Science, 2013, 1, 13-20.	0.3	1
256	Thermo-responsive fibrinogen nanogels: a viable thermo-responsive drug delivery agent for breast cancer therapy?. Nanomedicine, 2014, 9, 2721-2723.	3.3	0
257	Chitosan–nanohydroxyapatite nanocomposite for bone-tissue regeneration. , 2016, , 161-174.		0
258	Editorial. , 2016, 104, 663-664.		0
259	SI: Biological macromolecules for delivery, imaging & Si therapy (BMDIT-2018). International Journal of Biological Macromolecules, 2018, 110, 1.	7.5	0