## Liu-Xin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426149/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1 | Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‣ike MXene/Silver Nanowire<br>Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Selfâ€Derived<br>Hydrophobicity. Advanced Functional Materials, 2019, 29, 1905197. | 7.8  | 490       |
| 2 | Flexible, Transparent, and Conductive Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub><br>MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic<br>Interference Shielding. ACS Nano, 2020, 14, 16643-16653.          | 7.3  | 270       |
| 3 | Kirigami-Inspired Highly Stretchable, Conductive, and Hierarchical<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Films for Efficient Electromagnetic<br>Interference Shielding and Pressure Sensing. ACS Nano, 2021, 15, 7668-7681.                 | 7.3  | 187       |
| 4 | Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency. Nano-Micro Letters, 2022, 14, 111.                                                                                | 14.4 | 70        |
| 5 | Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable<br>Electromagnetic Interference Shielding Performances. ACS Applied Materials & Interfaces, 2022, 14,<br>12703-12712.                                                           | 4.0  | 58        |
| 6 | Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Research, 2022, 15, 4916-4924.                                                                                                           | 5.8  | 53        |
| 7 | Tough and electrically conductive Ti3C2T MXene–based core–shell fibers for high–performance<br>electromagnetic interference shielding and heating application. Chemical Engineering Journal, 2022,<br>430, 133074.                                                  | 6.6  | 43        |
| 8 | Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for<br>high-performance electromagnetic interference shielding. Journal of Materials Chemistry A, 2022, 10,<br>14364-14373.                                                      | 5.2  | 28        |