Amy J Wagers

List of Publications by Citations

Source: https://exaly.com/author-pdf/2426005/amy-j-wagers-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73	11,255	36	76
papers	citations	h-index	g-index
76	13,642 ext. citations	16.9	6.05
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
73	Rejuvenation of aged progenitor cells by exposure to a young systemic environment. <i>Nature</i> , 2005 , 433, 760-4	50.4	1642
72	The Immunological Genome Project: networks of gene expression in immune cells. <i>Nature Immunology</i> , 2008 , 9, 1091-4	19.1	1098
71	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. <i>Nature Neuroscience</i> , 2013 , 16, 1211-1218	25.5	1032
70	Physiological migration of hematopoietic stem and progenitor cells. <i>Science</i> , 2001 , 294, 1933-6	33.3	748
69	Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. <i>Science</i> , 2014 , 344, 630-4	33.3	655
68	Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. <i>Cell</i> , 2013 , 153, 828-39	56.2	629
67	Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. <i>Science</i> , 2014 , 344, 649-52	33.3	568
66	Stem cell aging: mechanisms, regulators and therapeutic opportunities. <i>Nature Medicine</i> , 2014 , 20, 870-	-89 0.5	444
65	Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell, 2012, 10, 96-103	18	434
64	A multifunctional AAV-CRISPR-Cas9 and its host response. <i>Nature Methods</i> , 2016 , 13, 868-74	21.6	359
63	Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. <i>Genome Research</i> , 2015 , 25, 1860-72	9.7	348
62	Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. <i>Cell</i> , 2014 , 156, 440-55	56.2	296
61	Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. <i>Immunity</i> , 2016 , 44, 355-67	32.3	256
60	Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. <i>Cell Metabolism</i> , 2015 , 21, 543-57	24.6	237
59	The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. <i>Cell Stem Cell</i> , 2008 , 2, 380-91	18	215
58	The stem cell niche in regenerative medicine. Cell Stem Cell, 2012, 10, 362-9	18	184
57	The cis-Regulatory Atlas of the Mouse Immune System. <i>Cell</i> , 2019 , 176, 897-912.e20	56.2	161

(2015-2016)

56	Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. <i>Nature Reviews Molecular Cell Biology</i> , 2016 , 17, 267-79	48.7	156
55	Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. <i>Neuron</i> , 2014 , 83, 331-343	13.9	156
54	A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. <i>Cell</i> , 2013 , 155, 909-921	56.2	123
53	Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. <i>Circulation Research</i> , 2016 , 118, 29-37	15.7	122
52	The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. <i>Cancer Cell</i> , 2014 , 26, 273-87	24.3	122
51	Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. <i>Circulation Research</i> , 2016 , 118, 1125-41; discussion 1142	15.7	116
50	FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. <i>PLoS ONE</i> , 2015 , 10, e0128094	3.7	98
49	EGLN1 Inhibition and Rerouting of EKetoglutarate Suffice for Remote Ischemic Protection. <i>Cell</i> , 2016 , 164, 884-95	56.2	71
48	Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. <i>Cell Reports</i> , 2014 , 8, 256-71	10.6	69
47	Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. <i>Stem Cell Reports</i> , 2013 , 1, 266-80	8	66
46	Lineage of origin in rhabdomyosarcoma informs pharmacological response. <i>Genes and Development</i> , 2014 , 28, 1578-91	12.6	64
45	Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 2017, 15, 19	7.3	63
44	Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. <i>Stem Cell Reports</i> , 2014 , 2, 92-106	8	54
43	Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20002-7	11.5	54
42	Organism-Level Analysis of Vaccination Reveals Networks of Protection across Tissues. <i>Cell</i> , 2017 , 171, 398-413.e21	56.2	50
41	Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. <i>Stem Cell Reports</i> , 2018 , 10, 1505-1521	8	45
40	Developmental regulation of myeloerythroid progenitor function by the Lin28b-let-7-Hmga2 axis. <i>Journal of Experimental Medicine</i> , 2016 , 213, 1497-512	16.6	44
39	Young, proliferative thymic epithelial cells engraft and function in aging thymuses. <i>Journal of Immunology</i> , 2015 , 194, 4784-95	5.3	43

38	Rhabdomyosarcoma: current challenges and their implications for developing therapies. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2014 , 4, a025650	5.4	42
37	Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. <i>ELife</i> , 2015 , 4,	8.9	35
36	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. <i>Cell Metabolism</i> , 2015 , 22, 239-52	24.6	34
35	Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. <i>Blood</i> , 2014 , 124, 2937-47	2.2	34
34	Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. <i>Cell</i> , 2021 , 184, 4919-4938.e22	56.2	30
33	The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. <i>Nature Communications</i> , 2019 , 10, 5137	17.4	28
32	Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. <i>PLoS Genetics</i> , 2014 , 10, e1004107	6	26
31	In Situ Modification of Tissue Stem and Progenitor Cell Genomes. <i>Cell Reports</i> , 2019 , 27, 1254-1264.e7	10.6	25
30	Engineering Escherichia coli into a protein delivery system for mammalian cells. <i>ACS Synthetic Biology</i> , 2015 , 4, 644-54	5.7	25
29	Overexpressing IRS1 in Endothelial Cells Enhances Angioblast Differentiation and Wound Healing in Diabetes and Insulin Resistance. <i>Diabetes</i> , 2016 , 65, 2760-71	0.9	24
28	The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. <i>Endocrinology</i> , 2016 , 157, 4066-4075	4.8	23
27	High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. <i>Stem Cell Research</i> , 2015 , 14, 307-22	1.6	18
26	Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. <i>Blood</i> , 2016 , 128, 1465-74	2.2	15
25	Analysis of Cre-mediated genetic deletion of in cardiomyocytes of young mice. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2019 , 317, H201-H212	5.2	12
24	Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts. <i>Stem Cells Translational Medicine</i> , 2015 , 4, 1101-8	6.9	11
23	FOS licenses early events in stem cell activation driving skeletal muscle regeneration. <i>Cell Reports</i> , 2021 , 34, 108656	10.6	9
22	Prolyl Hydroxylase Domain-2 Inhibition Improves Skeletal Muscle Regeneration in a Male Murine Model of Obesity. <i>Frontiers in Endocrinology</i> , 2017 , 8, 153	5.7	8
21	Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice. <i>Scientific Reports</i> , 2020 , 10, 4561	4.9	7

(2020-2019)

20	Steady-state and regenerative hematopoiesis occurs normally in mice in the absence of GDF11. <i>Blood</i> , 2019 , 134, 1712-1716	2.2	6
19	Whatß in a (Sub)strain?. Stem Cell Reports, 2018, 11, 303-305	8	3
18	Distinct malignant behaviors of mouse myogenic tumors induced by different oncogenetic lesions. <i>Frontiers in Oncology</i> , 2015 , 5, 50	5.3	3
17	Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. <i>IScience</i> , 2020 , 23, 101521	6.1	3
16	Aging and Rejuvenation: Insights from Rusty Gage, Leonard Guarente, and Amy Wagers. <i>Trends in Molecular Medicine</i> , 2016 , 22, 633-634	11.5	3
15	Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus. <i>Scientific Reports</i> , 2019 , 9, 18613	4.9	3
14	Attenuation of PKClenhances metabolic activity and promotes expansion of blood progenitors. <i>EMBO Journal</i> , 2018 , 37,	13	3
13	Hedgehog-driven myogenic tumors recapitulate skeletal muscle cellular heterogeneity. <i>Experimental Cell Research</i> , 2016 , 340, 43-52	4.2	1
12	Hematopoietic Stem/Progenitor Cell Retention in the Bone Marrow Depends On Tissue Specific Heparan Sulfate Proteoglycans. <i>Blood</i> , 2012 , 120, 637-637	2.2	1
11	Methods of Isolation and Analysis of TREG Immune Infiltrates from Injured and Dystrophic Skeletal Muscle. <i>Methods in Molecular Biology</i> , 2019 , 1899, 229-237	1.4	O
10	Tissue Derived Non-Classical Monocyte Derived Host Macrophages Protect Against Murine Intestinal Acute Graft-Versus-Host Disease. <i>Blood</i> , 2018 , 132, 3315-3315	2.2	
9	Inhibition of Let-7 Maturation By Lin28b Controls Timing of Embryonic and Adult Myeloid Progenitor Phenotypes during Development. <i>Blood</i> , 2014 , 124, 763-763	2.2	
8	Age Dependent Alternations In Hematopoietic Stem Cell Niches. <i>Blood</i> , 2011 , 118, 2395-2395	2.2	
7	Novel Small-Scale Phosphoproteomic Discovery Of Therapeutic Targets For Hematopoietic Stem and Progenitor Cell Mobilization. <i>Blood</i> , 2013 , 122, 1183-1183	2.2	
6	Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells 2020 , 15, e0238572		
5	Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells 2020 , 15, e0238572		
4	Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells 2020 , 15, e0238572		
3	Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells 2020 , 15, e0238572		

- Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells **2020**, 15, e0238572
- Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells **2020**, 15, e0238572