Jean-François Moyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2425627/publications.pdf

Version: 2024-02-01

98 papers 10,730 citations

39 h-index 81 g-index

101 all docs

101 docs citations

101 times ranked

3768 citing authors

#	Article	IF	CITATIONS
1	An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79, 1-24.	1.4	2,254
2	High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature― Lithos, 2009, 112, 556-574.	1.4	806
3	Forty years of TTG research. Lithos, 2012, 148, 312-336.	1.4	697
4	The diversity and evolution of late-Archean granitoids: Evidence for the onset of "modern-style―plate tectonics between 3.0 and 2.5Ga. Lithos, 2014, 205, 208-235.	1.4	557
5	The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 2011, 123, 21-36.	1.4	515
6	Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research, 2000, 99, 225-254.	2.7	482
7	Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology, 2002, 30, 319.	4.4	394
8	Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Research, 2003, 127, 103-123.	2.7	342
9	Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 2007, 35, 9.	4.4	313
10	Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 2012, 40, 195-219.	11.0	310
11	Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 2014, 198-199, 1-13.	1.4	242
12	Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos, 2017, 277, 154-177.	1.4	233
13	Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 2006, 442, 559-562.	27.8	228
14	Archaean tectonic systems: A view from igneous rocks. Lithos, 2018, 302-303, 99-125.	1.4	200
15	Multi-element geochemical modelling of crust–mantle interactions during late-Archaean crustal growth: the Closepet granite (South India). Precambrian Research, 2001, 112, 87-105.	2.7	199
16	Short-term episodicity of Archaean plate tectonics. Geology, 2012, 40, 451-454.	4.4	171
17	Heading down early on? Start of subduction on Earth. Geology, 2014, 42, 139-142.	4.4	167
18	Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth and Planetary Science Letters, 2016, 456, 182-195.	4.4	161

#	Article	IF	CITATIONS
19	The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions To Mineralogy and Petrology, 2009, 158, 543-561.	3.1	158
20	The sanukitoid series: magmatism at the Archaean–Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 15-33.	0.3	157
21	Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nature Geoscience, 2020, 13, 163-169.	12.9	141
22	Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. Geophysical Monograph Series, 2006, , 149-175.	0.1	113
23	Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. Journal of Structural Geology, 2003, 25, 611-631.	2.3	104
24	Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central. International Journal of Earth Sciences, 2017, 106, 421-451.	1.8	89
25	Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland. Lithos, 2005, 79, 207-228.	1.4	86
26	Geochemistry and petrogenesis of high-K "sanukitoids―from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary. Lithos, 2011, 123, 73-91.	1.4	77
27	The processes that control leucosome compositions in metasedimentary granulites: perspectives from the Southern Marginal Zone migmatites, Limpopo Belt, South Africa. Journal of Metamorphic Geology, 2014, 32, 713-742.	3.4	75
28	When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180103.	3.4	74
29	Chapter 5.6 TTG Plutons of the Barberton Granitoid-Greenstone Terrain, South Africa. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, , 607-667.	0.2	57
30	Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. Precambrian Research, 2013, 227, 186-203.	2.7	57
31	Rapid evolution from sediment to anatectic granulite in an Archean continental collision zone: the example of the Bandelierkop Formation metapelites, South Marginal Zone, Limpopo Belt, South Africa. Journal of Metamorphic Geology, 2015, 33, 177-202.	3.4	56
32	Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Research, 2017, 46, 170-190.	6.0	53
33	LA-ICP-MS dating of zircons from Meso- and Neoarchean granitoids of the Pietersburg block (South) Tj ETQq1 1 230, 209-226.	0.784314 2.7	rgBT /Overloc 51
34	Rcrust: a tool for calculating pathâ€dependent open system processes and application to melt loss. Journal of Metamorphic Geology, 2016, 34, 663-682.	3.4	51
35	Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: Evidence from zircon U–Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton. Earth and Planetary Science Letters, 2017, 457, 149-159.	4.4	51
36	Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central. Bulletin - Societie Geologique De France, 2020, 191, 25.	2.2	49

#	Article	IF	CITATIONS
37	Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 2021, 402-403, 106291.	1.4	43
38	Diversity in Earth's early felsic crust: Paleoarchean peraluminous granites of the Barberton Greenstone Belt. Geology, 2011, 39, 963-966.	4.4	41
39	Chemical variation, modal composition and classification of granitoids. Geological Society Special Publication, 2020, 491, 9-51.	1.3	40
40	THE ROLE OF CRUSTAL ANATEXIS AND MANTLE-DERIVED MAGMAS IN THE GENESIS OF SYNOROGENIC HERCYNIAN GRANITES OF THE LIVRADOIS AREA, FRENCH MASSIF CENTRAL. Canadian Mineralogist, 2007, 45, 581-606.	1.0	39
41	Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France). Journal of Geosciences (Czech) Tj $ETQq1\ 1\ 0.784$	31 4.6 gBT	/Oserlock 10
42	Geochemical Modelling of Igneous Processes – Principles And Recipes in R Language. , 2016, , .		39
43	The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 35-50.	0.3	38
44	Evidence in Archaean Alkali Feldspar Megacrysts for High-Temperature Interaction with Mantle Fluids. Journal of Petrology, 2012, 53, 67-98.	2.8	34
45	The Murchison Greenstone Belt, South Africa: Accreted slivers with contrasting metamorphic conditions. Precambrian Research, 2013, 227, 77-98.	2.7	34
46	Cadomian S-type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin. Lithos, 2017, 286-287, 16-34.	1.4	34
47	Insights into the complexity of crustal differentiation: K ₂ Oâ€poor leucosomes within metasedimentary migmatites from the Southern Marginal Zone of the Limpopo Belt, South Africa. Journal of Metamorphic Geology, 2017, 35, 999-1022.	3.4	34
48	Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 2016, 6, 26359.	3.3	33
49	Archean granitoids: classification, petrology, geochemistry and origin. Geological Society Special Publication, 2020, 489, 15-49.	1.3	33
50	Plutons and domes: the consequences of anatectic magma extractionâ€"example from the southeastern French Massif Central. International Journal of Earth Sciences, 2018, 107, 2819-2842.	1.8	32
51	TTGs in the making: Natural evidence from Inyoni shear zone (Barberton, South Africa). Lithos, 2012, 153, 25-38.	1.4	31
52	The Formation of Tonalites–Trondjhemite–Granodiorites in Early Continental Crust. , 2019, , 133-168.		29
53	Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the north Gondwana margin. Precambrian Research, 2019, 324, 269-284.	2.7	27
54	THE MURCHISON GREENSTONE BELT (SOUTH AFRICA): A GENERAL TECTONIC FRAMEWORK. South African Journal of Geology, 2012, 115, 65-76.	1.2	24

#	Article	IF	Citations
55	TTG Plutons of the Barberton Granitoid-Greenstone Terrain, South Africa., 2019, , 615-653.		19
56	Granites and crustal heat budget. Geological Society Special Publication, 2020, 491, 77-100.	1.3	19
57	Contrasted granite emplacement modes within an oblique crustal section: the Closepet Granite, South India. Physics and Chemistry of the Earth, 2001, 26, 295-301.	0.6	17
58	A record of 0.5†Ga of evolution of the continental crust along the northern edge of the Kaapvaal Craton, South Africa: Consequences for the understanding of Archean geodynamic processes. Precambrian Research, 2018, 305, 310-326.	2.7	17
59	Theoretical versus empirical secular change in zircon composition. Earth and Planetary Science Letters, 2021, 554, 116660.	4.4	17
60	Whole-rock geochemical modelling of granite genesis: the current state of play. Geological Society Special Publication, 2020, 491, 267-291.	1.3	16
61	Early Earth zircons formed in residual granitic melts produced by tonalite differentiation. Geology, 2022, 50, 437-441.	4.4	15
62	A comment on ultrahigh-temperature metamorphism from an unusual corundumÂ+Âorthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	14
63	Archean granitoids of India: windows into early Earth tectonics – an introduction. Geological Society Special Publication, 2020, 489, 1-13.	1.3	14
64	Crustal melting vs. fractionation of basaltic magmas: Part 2, Attempting to quantify mantle and crustal contributions in granitoids. Lithos, 2021, 402-403, 106292.	1.4	14
65	The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. National Science Review, 2022, 9, nwab136.	9.5	14
66	Make subductions diverse again. Earth-Science Reviews, 2022, 226, 103966.	9.1	14
67	Chapter 5.7 Metamorphism in the Barberton Granite Greenstone Terrain: A Record of Paleoarchean Accretion. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, , 669-698.	0.2	13
68	The sanukitoid series: magmatism at the Archaean–Proterozoic transition. , 2010, , .		13
69	The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau., 2008, , 173-197.		11
70	Performing process-oriented investigations involving mass transfer using Rcrust: a new phase equilibrium modelling tool. Geological Society Special Publication, 2020, 491, 209-221.	1.3	11
71	A phase equilibrium investigation of selected source controls on the composition of melt batches generated by sequential melting of an average metapelite. Geological Society Special Publication, 2020, 491, 223-241.	1.3	10
72	Comment on "Ultrahigh temperature granulites and magnesian charnockites: Evidence for the Neoarchean accretion along the northern margin of the Kaapvaal craton―by Rajesh et al Precambrian Research, 2014, 255, 455-458.	2.7	7

#	Article	IF	Citations
73	Orosirian magmatism in the Tapaj \tilde{A}^3 s Mineral Province (Amazonian Craton): The missing link to understand the onset of Paleoproterozoic tectonics. Lithos, 2020, 356-357, 105350.	1.4	7
74	Multiple Sulfur Isotope Records of the 3.22 Ga Moodies Group, Barberton Greenstone Belt. Geosciences (Switzerland), 2020, 10, 145.	2.2	7
75	About this title - Archean Granitoids of India: Windows into Early Earth Tectonics. Geological Society Special Publication, 2020, 489, NP-NP.	1.3	6
76	Craton Formation in Early Earth Mantle Convection Regimes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
77	Dolerites of the Woodlark Basin (Papuan Peninsula, New Guinea): A geochemical record of the influence of a neighbouring subduction zone. Journal of Asian Earth Sciences, 2008, 33, 139-154.	2.3	5
78	Mineral–fluid interactions in the late Archean Closepet granite batholith, Dharwar Craton, southern India. Geological Society Special Publication, 2020, 489, 293-314.	1.3	5
79	Multi-scale spatial distribution of K, Th and U in an Archaean potassic granite: a case study from the Heerenveen batholith, Barberton Granite-Greenstone Terrain, South Africa. South African Journal of Geology, 2021, 124, 53-86.	1.2	5
80	Mass Balance Modelling of Magmatic Processes in GCDkit. Society of Earth Scientists Series, 2014, , 225-238.	0.3	5
81	Metasediment-derived melts in subduction zone magmas and their influence on crustal evolution. Journal of Petrology, 0, , .	2.8	5
82	When zircon drowns: Elusive geochronological record of water-fluxed orthogneiss melting in the Velay dome (Massif Central, France). Lithos, 2021, 384-385, 105938.	1.4	4
83	Thermal evolution of the Stolzburg Block, Barberton granitoid-greenstone terrain, South Africa: Implications for Paleoarchean tectonic processes. Precambrian Research, 2021, 359, 106082.	2.7	4
84	Archaean granitoids: classification, petrology, geochemistry and origin. Geological Society Special Publication, 0, , SP490-2018-34.	1.3	3
85	The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. , 2010, , .		2
86	Metamorphic origin of anastomosing and wavy laminas overprinting putative microbial deposits from the 3.22ÅGa Moodies Group (Barberton Greenstone Belt). Precambrian Research, 2021, 362, 106306.	2.7	2
87	Classical Plots. , 2016, , 27-43.		1
88	The Impact of Measurement Scale on the Univariate Statistics of K, Th, and U in the Earth Crust. Earth and Space Science, 2021, 8, e2021EA001786.	2.6	1
89	Granite and Related Rocks., 2021,, 170-183.		1
90	Dharwar Craton. , 2014, , 1-4.		O

#	Article	lF	CITATIONS
91	Direct (dilute) Trace-Element Models. , 2016, , 105-124.		O
92	Choosing an Appropriate Model. , 2016, , 181-189.		0
93	Common Sense in Action. , 2016, , 231-241.		O
94	Dharwar Craton. , 2021, , 1-4.		0
95	High-temperature fluids in granites during the Neoarchaean-Palaeoproterozoic transition: Insight from Closepet titanite chemistry and U-Pb dating (Dharwar craton, India). Lithos, 2021, 386-387, 106039.	1.4	O
96	Dharwar Craton. , 2015, , 631-634.		0
97	Towards the fertility trend: unraveling the economic potential of igneous suites through whole-rock and zircon geochemistry (example from the Tapaj \tilde{A}^3 s Mineral Province, Northern Brazil). Ore Geology Reviews, 2022, , 104643.	2.7	O
98	Reply to comment on "Metamorphic origin of anastomosing and wavy laminas overprinting putative microbial deposits from the 3.22ÂGa Moodies Group (Barberton Greenstone Belt)― Precambrian Research, 2022, 373, 106624.	2.7	0