
Thomas J Kipps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2425261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15524-15529.	3.3	4,641
2	miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13944-13949.	3.3	3,287
3	Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood, 2008, 111, 5446-5456.	0.6	2,887
4	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	13.9	2,255
5	Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2014, 370, 997-1007.	13.9	1,535
6	Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2016, 374, 311-322.	13.9	1,532
7	Ibrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. New England Journal of Medicine, 2014, 371, 213-223.	13.9	1,427
8	Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2015, 373, 2425-2437.	13.9	1,261
9	MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11755-11760.	3.3	1,238
10	iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131, 2745-2760.	0.6	1,069
11	CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006, 107, 1761-1767.	0.6	1,063
12	Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia. Journal of Experimental Medicine, 2001, 194, 1639-1648.	4.2	978
13	ZAP-70 Compared with Immunoglobulin Heavy-Chain Gene Mutation Status as a Predictor of Disease Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2004, 351, 893-901.	13.9	824
14	MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5166-5171.	3.3	741
15	Substantial Susceptibility of Chronic Lymphocytic Leukemia to BCL2 Inhibition: Results of a Phase I Study of Navitoclax in Patients With Relapsed or Refractory Disease. Journal of Clinical Oncology, 2012, 30, 488-496.	0.8	719
16	Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2018, 378, 1107-1120.	13.9	684
17	Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. Cancer Cell, 2007, 12, 215-229.	7.7	681
18	Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell–derived factor-1. Blood, 2000, 96, 2655-2663.	0.6	648

#	Article	IF	CITATIONS
19	Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. New England Journal of Medicine, 2019, 380, 2225-2236.	13.9	599
20	Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. Journal of Clinical Oncology, 2017, 35, 826-833.	0.8	596
21	Tcl1 Expression in Chronic Lymphocytic Leukemia Is Regulated by miR-29 and miR-181. Cancer Research, 2006, 66, 11590-11593.	0.4	568
22	Ofatumumab As Single-Agent CD20 Immunotherapy in Fludarabine-Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2010, 28, 1749-1755.	0.8	541
23	Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood, 2002, 100, 4609-4614.	0.6	446
24	Chronic Lymphocytic Leukemia B Cells Express Functional CXCR4 Chemokine Receptors That Mediate Spontaneous Migration Beneath Bone Marrow Stromal Cells. Blood, 1999, 94, 3658-3667.	0.6	443
25	Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3118-3123.	3.3	368
26	Chronic lymphocytic leukaemia. Nature Reviews Disease Primers, 2017, 3, 16096.	18.1	363
27	ATM Mutations in Cancer: Therapeutic Implications. Molecular Cancer Therapeutics, 2016, 15, 1781-1791.	1.9	351
28	Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13253-13257.	3.3	342
29	Downregulation of Death-Associated Protein Kinase 1 (DAPK1) in Chronic Lymphocytic Leukemia. Cell, 2007, 129, 879-890.	13.5	338
30	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	2.4	331
31	Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia, 2020, 34, 787-798.	3.3	321
32	CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood, 2000, 96, 2917-2924.	0.6	318
33	The CD5 B Cell. Advances in Immunology, 1989, 47, 117-187.	1.1	311
34	Final analysis from RESONATE: Up to six years of followâ€up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. American Journal of Hematology, 2019, 94, 1353-1363.	2.0	305
35	Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncology, The, 2017, 18, 230-240.	5.1	287
36	Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3047-3052.	3.3	286

#	Article	IF	CITATIONS
37	Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood, 2005, 106, 1824-1830.	0.6	275
38	Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-11±. Blood, 2005, 106, 1012-1020.	0.6	270
39	Phase I study of obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood, 2009, 113, 299-305.	0.6	260
40	Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood, 2016, 128, 195-203.	0.6	259
41	Association of a MicroRNA/TP53 Feedback Circuitry With Pathogenesis and Outcome of B-Cell Chronic Lymphocytic Leukemia. JAMA - Journal of the American Medical Association, 2011, 305, 59.	3.8	256
42	Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003, 22, 8093-8101.	2.6	255
43	DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nature Genetics, 2016, 48, 253-264.	9.4	254
44	Fixed Duration of Venetoclax-Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Eradicates Minimal Residual Disease and Prolongs Survival: Post-Treatment Follow-Up of the MURANO Phase III Study. Journal of Clinical Oncology, 2019, 37, 269-277.	0.8	250
45	Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood, 2014, 123, 1810-1817.	0.6	246
46	ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood, 2005, 105, 2036-2041.	0.6	225
47	Distinctive features of "nurselike―cells that differentiate in the context of chronic lymphocytic leukemia. Blood, 2002, 99, 1030-1037.	0.6	223
48	Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood, 2004, 104, 2499-2504.	0.6	220
49	BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-κB pathway. Blood, 2007, 109, 703-710.	0.6	210
50	Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncology, The, 2020, 21, 1188-1200.	5.1	208
51	Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood, 2002, 100, 1795-1801.	0.6	206
52	Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica, 2017, 102, 1796-1805.	1.7	200
53	ROR1 Is Expressed in Human Breast Cancer and Associated with Enhanced Tumor-Cell Growth. PLoS ONE, 2012, 7, e31127.	1.1	199
54	NOTCH1 mutations in CLL associated with trisomy 12. Blood, 2012, 119, 329-331.	0.6	190

#	Article	IF	CITATIONS
55	Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nature Medicine, 1997, 3, 984-989.	15.2	186
56	Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5071-5076.	3.3	183
57	Novel Targeted Agents and the Need to Refine Clinical End Points in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2012, 30, 2820-2822.	0.8	182
58	Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood, 2019, 133, 2031-2042.	0.6	178
59	Transcriptome Sequencing Reveals Potential Mechanism of Cryptic 3' Splice Site Selection in SF3B1-mutated Cancers. PLoS Computational Biology, 2015, 11, e1004105.	1.5	177
60	Final Results of a Randomized, Phase III Study of Rituximab With or Without Idelalisib Followed by Open-Label Idelalisib in Patients With Relapsed Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2019, 37, 1391-1402.	0.8	177
61	Fibroblast-Like Synoviocytes of Mesenchymal Origin Express Functional B Cell-Activating Factor of the TNF Family in Response to Proinflammatory Cytokines. Journal of Immunology, 2005, 174, 864-870.	0.4	176
62	The soluble CD40 ligand sCD154 in systemic lupus erythematosus. Journal of Clinical Investigation, 1999, 104, 947-955.	3.9	176
63	An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. British Journal of Haematology, 2008, 142, 802-807.	1.2	173
64	Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Cancer Cell, 2016, 30, 750-763.	7.7	173
65	Chronic lymphocytic leukemia modeled in mouse by targeted <i>miR-29</i> expression. Proceedings of the United States of America, 2010, 107, 12210-12215.	3.3	167
66	The Onco-Embryonic Antigen ROR1 Is Expressed by a Variety of Human Cancers. American Journal of Pathology, 2012, 181, 1903-1910.	1.9	162
67	MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood, 2014, 124, 546-554.	0.6	162
68	Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17266-17271.	3.3	159
69	The triterpenoid CDDO induces apoptosis in refractory CLL B cells. Blood, 2002, 100, 2965-2972.	0.6	157
70	Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell–derived factor-1– and CD106 (VCAM-1)–dependent mechanism. Journal of Clinical Investigation, 2001, 107, 305-315.	3.9	156
71	A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leukemia and Lymphoma, 2015, 56, 2826-2833.	0.6	155
72	Rational Design and Real Time, In-Cell Detection of the Proapoptotic Activity of a Novel Compound Targeting Bcl-XL. Chemistry and Biology, 2004, 11, 389-395.	6.2	150

#	Article	IF	CITATIONS
73	Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. Journal of Clinical Investigation, 2015, 126, 585-598.	3.9	149
74	Phase I-II Study of Oxaliplatin, Fludarabine, Cytarabine, and Rituximab Combination Therapy in Patients With Richter's Syndrome or Fludarabine-Refractory Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2008, 26, 196-203.	0.8	145
75	Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables. Blood, 2019, 134, 111-122.	0.6	145
76	Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations From the MURANO Phase III Study. Journal of Clinical Oncology, 2020, 38, 4042-4054.	0.8	141
77	Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood, 2005, 107, 859-861.	0.6	140
78	TNFR-Associated Factor Family Protein Expression in Normal Tissues and Lymphoid Malignancies. Journal of Immunology, 2000, 165, 5084-5096.	0.4	135
79	Chemokine Receptors and Stromal Cells in the Homing and Homeostasis of Chronic Lymphocytic Leukemia B Cells. Leukemia and Lymphoma, 2002, 43, 461-466.	0.6	135
80	Targeting ROR1 Inhibits Epithelial–Mesenchymal Transition and Metastasis. Cancer Research, 2013, 73, 3649-3660.	0.4	135
81	Evolution of DNA Methylation Is Linked to Genetic Aberrations in Chronic Lymphocytic Leukemia. Cancer Discovery, 2014, 4, 348-361.	7.7	135
82	miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood, 2014, 124, 84-95.	0.6	129
83	In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs. Mayo Clinic Proceedings, 2015, 90, 996-1000.	1.4	128
84	ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood, 2008, 111, 2685-2692.	0.6	123
85	Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood, 2011, 117, 6450-6458.	0.6	121
86	Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2012, 30, 2483-2491.	0.8	120
87	Phase I Trial: Cirmtuzumab Inhibits ROR1 Signaling and Stemness Signatures in Patients with Chronic Lymphocytic Leukemia. Cell Stem Cell, 2018, 22, 951-959.e3.	5.2	120
88	Familial Cancer Associated with a Polymorphism inARLTS1. New England Journal of Medicine, 2005, 352, 1667-1676.	13.9	119
89	Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. Journal of Clinical Oncology, 2021, 39, 3853-3865.	0.8	115
90	CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood, 2011, 117, 1662-1669.	0.6	112

#	Article	IF	CITATIONS
91	Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2. Haematologica, 2018, 103, 1502-1510.	1.7	111
92	Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood, 2017, 129, 2702-2705.	0.6	108
93	High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood, 2016, 128, 2931-2940.	0.6	102
94	Phase 1 Study of Lumiliximab with Detailed Pharmacokinetic and Pharmacodynamic Measurements in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2007, 13, 4448-4455.	3.2	101
95	Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1370-1377.	3.3	101
96	Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leukemia and Lymphoma, 2012, 53, 2136-2142.	0.6	100
97	Lack of Allelic Exclusion in B Cell Chronic Lymphocytic Leukemia. Journal of Experimental Medicine, 1997, 185, 1435-1446.	4.2	98
98	Flavopiridol administered as a 24-hour continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leukemia Research, 2005, 29, 1253-1257.	0.4	95
99	TWIST2 Demonstrates Differential Methylation in Immunoglobulin Variable Heavy Chain Mutated and Unmutated Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2005, 23, 3877-3885.	0.8	92
100	13q14 deletions in CLL involve cooperating tumor suppressors. Blood, 2010, 115, 3916-3922.	0.6	91
101	Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemiaÂ. Blood Advances, 2022, 6, 3440-3450.	2.5	91
102	Tcl1 functions as a transcriptional regulator and is directly involved in the pathogenesis of CLL. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19643-19648.	3.3	90
103	Long-term safety of single-agent ibrutinib in patients with chronic lymphocytic leukemia in 3 pivotal studies. Blood Advances, 2019, 3, 1799-1807.	2.5	90
104	Pre-clinical Specificity and Safety of UC-961, a First-In-Class Monoclonal Antibody Targeting ROR1. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S167-S169.	0.2	88
105	Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood, 2002, 100, 1795-801.	0.6	88
106	Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19532-19537.	3.3	86
107	Tumor Suppression by Phospholipase C-l²3 via SHP-1-Mediated Dephosphorylation of Stat5. Cancer Cell, 2009, 16, 161-171.	7.7	86
108	Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood, 2010, 115, 489-495.	0.6	86

#	Article	IF	CITATIONS
109	Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature, 2019, 570, 474-479.	13.7	86
110	Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood, 2016, 128, 1609-1613.	0.6	85
111	Ethacrynic Acid Exhibits Selective Toxicity to Chronic Lymphocytic Leukemia Cells by Inhibition of the Wnt/β-Catenin Pathway. PLoS ONE, 2009, 4, e8294.	1.1	83
112	Commonly Occurring Cell Subsets in High-Grade Serous Ovarian Tumors Identified by Single-Cell Mass Cytometry. Cell Reports, 2018, 22, 1875-1888.	2.9	83
113	Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood, 2022, 139, 3278-3289.	0.6	83
114	Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens. Blood, 2009, 113, 3168-3171.	0.6	82
115	Correction: Chronic lymphocytic leukaemia. Nature Reviews Disease Primers, 2017, 3, 17008.	18.1	82
116	Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget, 2016, 7, 54174-54182.	0.8	82
117	The Pathogenesis of Chronic Lymphocytic Leukemia. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 103-118.	9.6	81
118	MicroRNAs play a role in neoplasia. Blood, 2007, 109, 5071-5072.	0.6	79
119	Latent sensitivity to Fas-mediated apoptosis after CD40 ligation may explain activity of CD154 gene therapy in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3854-3859.	3.3	78
120	ROR1 can interact with TCL1 and enhance leukemogenesis in Eµ-TCL1 transgenic mice. Proceedings of the United States of America, 2014, 111, 793-798.	3.3	75
121	Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer, 2004, 101, 999-1008.	2.0	74
122	Tumor Necrosis Factor-α Facilitates Induction of CD80 (B7-1) and CD54 on Human B Cells by Activated T Cells: Complex Regulation by IL-4, IL-10, and CD40L. Cellular Immunology, 1995, 161, 226-235.	1.4	73
123	Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica, 2015, 100, 945-954.	1.7	73
124	AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML. Molecular Cancer Therapeutics, 2015, 14, 1650-1660.	1.9	72
125	Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. Blood, 2016, 127, 79-86.	0.6	72
126	A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell, 2019, 35, 283-296.e5.	7.7	71

#	Article	IF	CITATIONS
127	Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget, 2016, 7, 2809-2822.	0.8	71
128	Elucidating the CXCL12/CXCR4 Signaling Network in Chronic Lymphocytic Leukemia through Phosphoproteomics Analysis. PLoS ONE, 2010, 5, e11716.	1.1	69
129	Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6127-6132.	3.3	69
130	Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis, 2010, 31, 208-215.	1.3	68
131	ROR1 is expressed on hematogones (non-neoplastic human B-lymphocyte precursors) and a minority of precursor-B acute lymphoblastic leukemia. Leukemia Research, 2011, 35, 1390-1394.	0.4	68
132	Obinutuzumab plus fludarabine/cyclophosphamide or bendamustine in the initial therapy of CLL patients: the phase 1b GALTON trial. Blood, 2015, 125, 2779-2785.	0.6	68
133	Dielectrophoretic isolation and detection of cfcâ€ <scp>DNA</scp> nanoparticulate biomarkers and virus from blood. Electrophoresis, 2013, 34, 1076-1084.	1.3	67
134	The Dohner fluorescence <i>inÂsitu</i> hybridization prognostic classification of chronic lymphocytic leukaemia (<scp>CLL</scp>): the <scp>CLL</scp> Research Consortium experience. British Journal of Haematology, 2016, 173, 105-113.	1.2	66
135	Use of IGHV3–21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post–germinal center leukemogenic selection. Blood, 2008, 111, 5101-5108.	0.6	65
136	B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18956-18960.	3.3	64
137	Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood, 2014, 123, 4101-4110.	0.6	63
138	<i>TCL1</i> targeting <i>miR-3676</i> is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2169-2174.	3.3	63
139	Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood, 2019, 133, 2765-2775.	0.6	63
140	Normal B Cells Express <i>51p1</i> -Encoded Ig Heavy Chains That Are Distinct From Those Expressed by Chronic Lymphocytic Leukemia B Cells. Journal of Immunology, 2001, 166, 95-102.	0.4	62
141	Second Interim Analysis of a Phase 3 Study of Idelalisib (ZYDELIG®) Plus Rituximab (R) for Relapsed Chronic Lymphocytic Leukemia (CLL): Efficacy Analysis in Patient Subpopulations with Del(17p) and Other Adverse Prognostic Factors. Blood, 2014, 124, 330-330.	0.6	61
142	A Phase 1 Study of Venetoclax (ABT-199 / GDC-0199) Monotherapy in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma. Blood, 2015, 126, 254-254.	0.6	61
143	Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood, 2005, 106, 1742-1748.	0.6	60
144	Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood, 2014, 124, 42-48.	0.6	60

#	Article	IF	CITATIONS
145	Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood, 2011, 117, 882-889.	0.6	58
146	Tcl1 protein functions as an inhibitor of de novo DNA methylation in B-cell chronic lymphocytic leukemia (CLL). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2555-2560.	3.3	58
147	An anti-B cell autoantibody from Wiskott-Aldrich syndrome which recognizes i blood group specificity on normal human B cells. European Journal of Immunology, 1992, 22, 1781-1788.	1.6	57
148	MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. British Journal of Haematology, 2007, 139, 709-716.	1.2	56
149	Fas-ligand (CD178) and TRAIL synergistically induce apoptosis of CD40-activated chronic lymphocytic leukemia B cells. Blood, 2005, 105, 3193-3198.	0.6	55
150	Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood. Clinical Chemistry, 2014, 60, 500-509.	1.5	55
151	Dielectrophoretic isolation and detection of cancerâ€related circulating cellâ€free DNA biomarkers from blood and plasma. Electrophoresis, 2014, 35, 1828-1836.	1.3	55
152	Use of anticoagulants and antiplatelet in patients with chronic lymphocytic leukaemia treated with singleâ€agent ibrutinib. British Journal of Haematology, 2017, 178, 286-291.	1.2	55
153	Novel Immune-Based Treatment Strategies for Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2005, 23, 6325-6332.	0.8	53
154	Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica, 2021, 106, 2364-2373.	1.7	53
155	MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 1836-1839.	0.6	52
156	NCCN Guidelines Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 2.2019. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 12-20.	2.3	52
157	Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nature Cancer, 2021, 2, 758-772.	5.7	52
158	Deficient Fas ligand expression by synovial lymphocytes from patients with rheumatoid arthritis. Arthritis and Rheumatism, 1997, 40, 1644-1652.	6.7	50
159	Somatic <i>MED12</i> mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget, 2015, 6, 1884-1888.	0.8	49
160	Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Cancer Gene Therapy, 2000, 7, 1051-1059.	2.2	48
161	Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Cancer Genetics and Cytogenetics, 2010, 203, 134-140.	1.0	48
162	Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen. Blood, 2012, 119, 2293-2301.	0.6	48

#	Article	IF	CITATIONS
163	Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. Blood, 2012, 119, 180-187.	0.6	48
164	<i>MicroRNA</i> dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10731-10736.	3.3	48
165	Chronic lymphocytic leukemia of Eμ-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood, 2009, 114, 4469-4476.	0.6	46
166	Final results of EFC6663: A multicenter, international, phase 2 study of alvocidib for patients with fludarabine-refractory chronic lymphocytic leukemia. Leukemia Research, 2015, 39, 495-500.	0.4	46
167	Nonstochastic pairing of immunoglobulin heavy and light chains expressed by chronic lymphocytic leukemia B cells is predicated on the heavy chain CDR3. Blood, 2008, 111, 3137-3144.	0.6	45
168	Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24252-24258.	3.3	45
169	Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations. PLoS ONE, 2015, 10, e0128151.	1.1	43
170	Epstein–Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival. EBioMedicine, 2015, 2, 572-582.	2.7	43
171	Chronic lymphocytic leukemia. Current Opinion in Hematology, 1999, 6, 253.	1.2	43
172	Realâ€world clinical experience in the Connect [®] chronic lymphocytic leukaemia registry: a prospective cohort study of 1494 patients across 199 US centres. British Journal of Haematology, 2016, 175, 892-903.	1.2	42
173	ABT-199 (GDC-0199) in relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL): High complete- response rate and durable disease control Journal of Clinical Oncology, 2014, 32, 7015-7015.	0.8	42
174	Wnt5a Signaling in Normal and Cancer Stem Cells. Stem Cells International, 2017, 2017, 1-6.	1.2	41
175	Sorafenib-Induced Apoptosis of Chronic Lymphocytic Leukemia Cells Is Associated with Downregulation of RAF and Myeloid Cell Leukemia Sequence 1 (Mcl-1). Molecular Medicine, 2012, 18, 19-28.	1.9	40
176	Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia. Leukemia Research, 2020, 97, 106432.	0.4	40
177	Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): Results from the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood, 2019, 134, 35-35.	0.6	40
178	Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 4.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 185-217.	2.3	40
179	Gene Immunotherapy of Chronic Lymphocytic Leukemia: A Phase I Study of Intranodally Injected Adenovirus Expressing a Chimeric CD154 Molecule. Cancer Research, 2012, 72, 2937-2948.	0.4	39
180	Inhibitors of B-Cell Receptor Signaling for Patients With B-Cell Malignancies. Cancer Journal (Sudbury, Mass), 2012, 18, 404-410.	1.0	38

#	Article	IF	CITATIONS
181	Immunoglobulin transcript sequence and somatic hypermutation computation from unselected RNA-seq reads in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4322-4327.	3.3	38
182	Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood, 2019, 134, 1084-1094.	0.6	38
183	Long-term Follow-up of Patients with Relapsed or Refractory Non–Hodgkin Lymphoma Treated with Venetoclax in a Phase I, First-in-Human Study. Clinical Cancer Research, 2021, 27, 4690-4695.	3.2	38
184	Deep and Durable Responses Following Venetoclax (ABT-199 / GDC-0199) Combined with Rituximab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Results from a Phase 1b Study. Blood, 2015, 126, 830-830.	0.6	38
185	Transfer of human chronic lymphocytic leukemia to mice with severe combined immune deficiency. Leukemia Research, 1992, 16, 1013-1023.	0.4	37
186	<i>miR-29</i> modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors. Blood, 2021, 137, 2481-2494.	0.6	37
187	Quaking and <i>miR-155</i> interactions in inflammation and leukemogenesis. Oncotarget, 2015, 6, 24599-24610.	0.8	37
188	lsolation of heavy chain class switch variants of a monoclonal anti-DC1 hybridoma cell line: Effective conversion of noncytotoxic IgG1 antibodies to cytotoxic IgG2 antibodies. Human Immunology, 1983, 8, 141-151.	1.2	36
189	Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia. Blood, 2018, 132, 170-178.	0.6	36
190	Updated Efficacy and Safety from the Phase 3 Resonate-2 Study: Ibrutinib As First-Line Treatment Option in Patients 65 Years and Older with Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia. Blood, 2016, 128, 234-234.	0.6	36
191	Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genetics and Cytogenetics, 2010, 203, 161-168.	1.0	35
192	Long-Term Studies Assessing Outcomes of Ibrutinib Therapy in Patients With Del(11q) Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 715-722.e6.	0.2	35
193	The V4-34 Encoded Anti-i Autoantibodies Recognize a Large Subset of Human and Mouse B-Cells. Blood Cells, Molecules, and Diseases, 1996, 22, 126-138.	0.6	34
194	The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Practice and Research in Clinical Haematology, 2007, 20, 415-424.	0.7	34
195	hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents. ACS Chemical Biology, 2017, 12, 444-455.	1.6	34
196	Reduction in Mitochondrial Membrane Potential Is an Early Event in Fas-Independent CTL-Mediated Apoptosis. Cellular Immunology, 1999, 195, 43-52.	1.4	33
197	cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies. Nature Communications, 2022, 13, 1698.	5.8	33
198	NCCN Guidelines® Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 3.2022. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, 622-634.	2.3	33

#	Article	IF	CITATIONS
199	The Philadelphia (Ph) chromosome in leukemia. II. Variant Ph translocations in acute lymphoblastic leukemia. Cancer Genetics and Cytogenetics, 1985, 14, 11-21.	1.0	32
200	Metalloprotease inhibitors block release of soluble CD27 and enhance the immune stimulatory activity of chronic lymphocytic leukemia cells. Experimental Hematology, 2007, 35, 434-442.	0.2	32
201	Determination of Recommended Phase 2 Dose of ABT-199 (GDC-0199) Combined with Rituximab (R) in Patients with Relapsed / Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood, 2014, 124, 325-325.	0.6	32
202	Selection of Oligonucleotide Aptamers with Enhanced Uptake and Activation of Human Leukemia B Cells. Human Gene Therapy, 2003, 14, 849-860.	1.4	31
203	Ibrutinib for Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2016, 374, 1592-1595.	13.9	31
204	Longitudinal Single-Cell Dynamics of Chromatin Accessibility and Mitochondrial Mutations in Chronic Lymphocytic Leukemia Mirror Disease History. Cancer Discovery, 2021, 11, 3048-3063.	7.7	31
205	Ofatumumab (HuMax-CD20), a Novel CD20 Monoclonal Antibody, Is An Active Treatment for Patients with CLL Refractory to Both Fludarabine and Alemtuzumab or Bulky Fludarabine-Refractory Disease: Results from the Planned Interim Analysis of An International Pivotal Trial. Blood, 2008, 112, 328-328.	0.6	31
206	NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia. Cell Death and Differentiation, 2020, 27, 2206-2216.	5.0	30
207	Cellular immune therapy for chronic lymphocytic leukemia. Blood, 2007, 110, 2811-2818.	0.6	29
208	Targeted Therapy in Chronic Lymphocytic Leukemia. Cancer Journal (Sudbury, Mass), 2019, 25, 378-385.	1.0	29
209	Phase 1 Study Of Single Agent CC-292, a Highly Selective Bruton's Tyrosine Kinase (BTK) Inhibitor, In Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL). Blood, 2013, 122, 1630-1630.	0.6	29
210	Chronic lymphocytic leukemia. Current Opinion in Hematology, 1998, 5, 244-253.	1.2	28
211	Stabilized Cyclopropane Analogs of the Splicing Inhibitor FD-895. Journal of Medicinal Chemistry, 2013, 56, 6576-6582.	2.9	28
212	Wnt5a causes ROR1 to complex and activate cortactin to enhance migration of chronic lymphocytic leukemia cells. Leukemia, 2019, 33, 653-661.	3.3	28
213	Zilovertamab Vedotin Targeting of ROR1 as Therapy for Lymphoid Cancers. , 2022, 1, .		28
214	Immunoglobulin V Gene Expression in CD5 B-Cell Malignanciesa. Annals of the New York Academy of Sciences, 1992, 651, 373-383.	1.8	27
215	Outcomes with ibrutinib by line of therapy and postâ€ibrutinib discontinuation in patients with chronic lymphocytic leukemia: Phase 3 analysis. American Journal of Hematology, 2019, 94, 554-562.	2.0	27
216	A hotspot mutation in transcription factor IKZF3 drives B cell neoplasia via transcriptional dysregulation. Cancer Cell, 2021, 39, 380-393.e8.	7.7	27

#	Article	IF	CITATIONS
217	Developmental subtypes assessed by DNA methylation-iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood, 2019, 134, 688-698.	0.6	26
218	Anti-B cell autoantibodies encoded by VH 4–21 genes in human fetal spleen do not requirein vivo somatic selection. European Journal of Immunology, 1994, 24, 2941-2949.	1.6	25
219	CpG oligodeoxynucleotides enhance the capacity of adenovirus-mediated CD154 gene transfer to generate effective B-cell lymphoma vaccines. Cancer Research, 2003, 63, 4128-35.	0.4	25
220	Analysis of Immunoglobulin V _H Gene Repertoire by an Anchored PCRâ€Elisa ^a . Annals of the New York Academy of Sciences, 1995, 764, 463-473.	1.8	24
221	Hairy Cell Leukemia, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 1414-1427.	2.3	24
222	Singleâ€agent ibrutinib versus chemoimmunotherapy regimens for treatmentâ€naÃ⁻ve patients with chronic lymphocytic leukemia: A crossâ€trial comparison of phase 3 studies. American Journal of Hematology, 2018, 93, 1402-1410.	2.0	24
223	<scp>SET</scp> alpha and <scp>SET</scp> beta <scp>mRNA</scp> isoforms in chronic lymphocytic leukaemia. British Journal of Haematology, 2019, 184, 605-615.	1.2	24
224	Aurora B induces epithelial–mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis. Oncogene, 2020, 39, 2550-2567.	2.6	24
225	Impact of long-term ibrutinib treatment on circulating immune cells in previously untreated chronic lymphocytic leukemia. Leukemia Research, 2021, 102, 106520.	0.4	24
226	Rapid Undetectable MRD (uMRD) Responses in Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) Treated with Lisocabtagene Maraleucel (liso-cel), a CD19-Directed CAR T Cell Product: Updated Results from Transcend CLL 004, a Phase 1/2 Study Including Patients with High-Risk Disease Previously Treated with Ibrutinib. Blood, 2019, 134,	0.6	24
227	503-503. Safety and Efficacy Of Obinutuzumab (GA101) With Fludarabine/Cyclophosphamide (G-FC) Or Bendamustine (G-B) In The Initial Therapy Of Patients With Chronic Lymphocytic Leukemia (CLL): Results From The Phase 1b Galton Trial (GAO4779g). Blood, 2013, 122, 523-523.	0.6	24
228	Updated Efficacy Including Genetic and Clinical Subgroup Analysis and Overall Safety in the Phase 3 RESONATETM Trial of Ibrutinib Versus Ofatumumab in Previously Treated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Blood, 2014, 124, 3331-3331.	0.6	24
229	Computational identification of CDR3 sequence archetypes among immunoglobulin sequences in chronic lymphocytic leukemia. Leukemia Research, 2009, 33, 368-376.	0.4	23
230	Efficacy results of a phase 2 trial of first-line idelalisib plus ofatumumab in chronic lymphocytic leukemia. Blood Advances, 2019, 3, 1167-1174.	2.5	23
231	Safety and Efficacy of a Combination of Venetoclax (GDC-0199/ABT-199) and Obinutuzumab in Patients with Relapsed/Refractory or Previously Untreated Chronic Lymphocytic Leukemia - Results from a Phase 1b Study (GP28331). Blood, 2015, 126, 494-494.	0.6	23
232	The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget, 2017, 8, 25942-25954.	0.8	23
233	Dielectrophoretic recovery of DNA from plasma for the identification of chronic lymphocytic leukemia point mutations. International Journal of Hematologic Oncology, 2016, 5, 27-35.	0.7	22
234	Preliminary Results From A Phase I Dose Escalation Study to Determine the Maximum Tolerated Dose of Plerixafor In Combination with Rituximab In Patients with Relapsed Chronic Lymphocytic Leukemia. Blood, 2010, 116, 2450-2450.	0.6	22

#	Article	IF	CITATIONS
235	ROR1: an orphan becomes apparent. Blood, 2022, 140, 1583-1591.	0.6	22
236	Origin of High-Grade Lymphomas in Richter Syndrome. Leukemia and Lymphoma, 1995, 18, 367-372.	0.6	21
237	Chronic lymphocytic leukemia. Current Opinion in Hematology, 1997, 4, 268-276.	1.2	21
238	Advances in classification and therapy of indolent B-cell malignancies. Seminars in Oncology, 2002, 29, 98-104.	0.8	21
239	A Phase 2 Study of Idelalisib Monotherapy in Previously Untreated Patients ≥65 Years with Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL). Blood, 2014, 124, 1986-1986.	0.6	21
240	Update on a Phase 2 Study of Idelalisib in Combination with Rituximab in Treatment-NaÃ ⁻ ve Patients ≥65 Years with Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL). Blood, 2014, 124, 1994-1994.	0.6	21
241	Plasmids encoding granulocyte–macrophage colony-stimulating factor and CD154 enhance the immune response to genetic vaccines. Vaccine, 2001, 19, 2181-2189.	1.7	20
242	Immunobiology of chronic lymphocytic leukemia. Current Opinion in Hematology, 2003, 10, 312-318.	1.2	20
243	Standardization of fluorescence in situ hybridization studies on chronic lymphocytic leukemia (CLL) blood and marrow cells by the CLL Research Consortium. Cancer Genetics and Cytogenetics, 2010, 203, 141-148.	1.0	20
244	Structure and function of the hematopoietic cancer niche focus on chronic lymphocytic leukemia. Frontiers in Bioscience - Scholar, 2012, S4, 61-73.	0.8	20
245	Impact of oxygen concentration on growth of mesenchymal stromal cells from the marrow of patients with chronic lymphocytic leukemia. Blood, 2013, 121, 971-974.	0.6	20
246	Prognostic Factors for Complete Response to Ibrutinib in Patients With Chronic Lymphocytic Leukemia. JAMA Oncology, 2018, 4, 712.	3.4	20
247	Wnt5a enhances proliferation of chronic lymphocytic leukemia and ERK1/2 phosphorylation via a ROR1/DOCK2-dependent mechanism. Leukemia, 2021, 35, 1621-1630.	3.3	20
248	Exploring the pathways to chronic lymphocytic leukemia. Blood, 2021, 138, 827-835.	0.6	20
249	Selectivity in Small Molecule Splicing Modulation. ACS Chemical Biology, 2016, 11, 2716-2723.	1.6	19
250	Comparison of Results from a Phase 1/2 Study of Lumiliximab (Anti-CD23) in Combination with FCR for Patients with Relapsed CLL with Published FCR Results Blood, 2006, 108, 32-32.	0.6	19
251	Ofatumumab Combined with Fludarabine and Cyclophosphamide (O-FC) Shows High Activity in Patients with Previously Untreated Chronic Lymphocytic Leukemia (CLL): Results From a Randomized, Multicenter, International, Two-Dose, Parallel Group, Phase II Trial Blood, 2009, 114, 207-207.	0.6	19
252	Cirmtuzumab inhibits ibrutinib-resistant, Wnt5a-induced Rac1 activation and proliferation in mantle cell lymphoma. Oncotarget, 2018, 9, 24731-24736.	0.8	19

#	Article	IF	CITATIONS
253	HSV Amplicon-Mediated Delivery of LIGHT Enhances the Antigen-Presenting Capacity of Chronic Lymphocytic Leukemia. Molecular Therapy, 2002, 6, 455-463.	3.7	18
254	Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis. Npj Breast Cancer, 2019, 5, 35.	2.3	18
255	Structure and function of the hematopoietic cancer niche: focus on chronic lymphocytic leukemia. Frontiers in Bioscience - Scholar, 2012, S4, 61.	0.8	18
256	In vivo activation of signal transducer and activator of transcription 1 after CD154 gene therapy for chronic lymphocytic leukemia is associated with clinical and immunologic response. Clinical Cancer Research, 2003, 9, 2166-72.	3.2	18
257	Selfâ€administered, subcutaneous alemtuzumab to treat residual disease in patients with chronic lymphocytic leukemia. Cancer, 2011, 117, 116-124.	2.0	17
258	Safety and efficacy of different lenalidomide starting doses in patients with relapsed or refractory chronic lymphocytic leukemia: results of an international multicenter double-blinded randomized phase II trial*. Leukemia and Lymphoma, 2016, 57, 1291-1299.	0.6	17
259	Characterizing the kinetics of lymphocytosis in patients with chronic lymphocytic leukemia treated with single-agent ibrutinib. Leukemia and Lymphoma, 2019, 60, 1000-1005.	0.6	17
260	Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Science Translational Medicine, 2020, 12, .	5.8	17
261	Results of the Safety Run-in Phase of CLL14 (BO25323): A Prospective, Open-Label, Multicenter Randomized Phase III Trial to Compare the Efficacy and Safety of Obinutuzumab and Venetoclax (GDC-0199/ABT-199) with Obinutuzumab and Chlorambucil in Patients with Previously Untreated CLL and Coexisting Medical Conditions. Blood. 2015. 126. 496-496.	0.6	17
262	CD154 Gene Therapy for Human B-Cell Malignancies. Annals of the New York Academy of Sciences, 2005, 1062, 51-60.	1.8	16
263	A general process for the development of peptide-based immunoassays for monoclonal antibodies. Cancer Chemotherapy and Pharmacology, 2010, 66, 919-925.	1.1	16
264	Single nucleotide polymorphisms and inherited risk of chronic lymphocytic leukemia among African Americans. Blood, 2012, 120, 1687-1690.	0.6	16
265	A multicenter phase 1 study of plerixafor and rituximab in patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2019, 60, 3461-3469.	0.6	16
266	Preneoplastic Alterations Define CLL DNA Methylome and Persist through Disease Progression and Therapy. Blood Cancer Discovery, 2021, 2, 54-69.	2.6	16
267	Four-Year Analysis of Murano Study Confirms Sustained Benefit of Time-Limited Venetoclax-Rituximab (VenR) in Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood, 2019, 134, 355-355.	0.6	16
268	A Phase II, Open Label Study of AT-101 in Combination with Rituximab in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. Evaluation of Two Dose Regimens Blood, 2007, 110, 3119-3119.	0.6	16
269	Heat shock protein 70 regulates Tcl1 expression in leukemia and lymphomas. Blood, 2013, 121, 351-359.	0.6	15
270	Ofatumumab monotherapy in fludarabine-refractory chronic lymphocytic leukemia: final results from a pivotal study. Haematologica, 2015, 100, e311-4.	1.7	15

#	Article	IF	CITATIONS
271	Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood, 2019, 133, 2651-2663.	0.6	15
272	A Phase I Trial of the Small Molecule Pan-Bcl-2 Family Inhibitor GX15-070 Administered Intravenously (IV) Every 3 Weeks to Patients with Previously Treated Chronic Lymphocytic Leukemia (CLL) Blood, 2005, 106, 446-446.	0.6	15
273	Transgenic Expression of a Human Polyreactive Ig Expressed in Chronic Lymphocytic Leukemia Generates Memory-Type B Cells That Respond to Nonspecific Immune Activation. Journal of Immunology, 2004, 172, 2092-2099.	0.4	14
274	Gene therapy and active immune therapy of hematologic malignancies. Best Practice and Research in Clinical Haematology, 2007, 20, 557-568.	0.7	14
275	Proteomic Analysis of Chronic Lymphocytic Leukemia Cells Identifies Vimentin as a Novel Prognostic Factor for Aggressive Disease Blood, 2005, 106, 707-707.	0.6	14
276	Safety Profile and Clinical Response To MEDI-551, a Humanized Monoclonal Anti-CD19, In a Phase 1/2 Study In Adults With Relapsed Or Refractory Advanced B-Cell Malignancies. Blood, 2013, 122, 1810-1810.	0.6	14
277	Preliminary Results of a Phase 1b Study (GP28331) Combining GDC-0199 (ABT-199) and Obinutuzumab in Patients with Relapsed/Refractory or Previously Untreated Chronic Lymphocytic Leukemia. Blood, 2014, 124, 4687-4687.	0.6	14
278	Single Cell Profiling of B Cell Receptor Signaling and Apoptosis Networks in Chronic Lymphocytic Leukemia: Association with in Vitro Sensitivity to Fludarabine Monophosphate (F-ara-A) Blood, 2009, 114, 1263-1263.	0.6	14
279	Comparison of familial and sporadic chronic lymphocytic leukaemia using high resolution array comparative genomic hybridization. British Journal of Haematology, 2010, 151, 336-345.	1.2	13
280	Cyclic nucleotide phosphodiesterase 7B mRNA: An unfavorable characteristic in chronic lymphocytic leukemia. International Journal of Cancer, 2011, 129, 1162-1169.	2.3	13
281	Expression of MicroRNA (miR) miR-15a/miR-16-1 Downregulates Expression of BCL-2 Protein in Chronic Lymphocytic Leukemia Blood, 2006, 108, 2796-2796.	0.6	13
282	Navitoclax (ABT-263) Plus Fludarabine/Cyclophosphamide/Rituximab (FCR) or Bendamustine/Rituximab (BR): A Phase 1 Study In Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL). Blood, 2010, 116, 2455-2455.	0.6	13
283	Navitoclax (ABT-263) Plus Fludarabine/Cyclophosphamide/Rituximab (FCR) or Bendamustine/Rituximab (BR): A Phase 1 Study in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL),. Blood, 2011, 118, 3904-3904.	0.6	13
284	IGHV1-69-Encoded Antibodies Expressed in Chronic Lymphocytic Leukemia React with Malondialdehyde–Acetaldehyde Adduct, an Immunodominant Oxidation-Specific Epitope. PLoS ONE, 2013, 8, e65203.	1.1	13
285	Structural Features of ROR1 Required for Complexing with ROR2 and Enhancing Chemokine-Induced Migration and Leukemia-Cell Proliferation, Which Can be Blocked By the Anti-ROR1 Mab Cirmtuzumab (UC-961). Blood, 2015, 126, 1741-1741.	0.6	13
286	Expression of Ig-β (CD79b) by chronic lymphocytic leukemia B cells that lack immunoglobulin heavy-chain allelic exclusion. Blood, 2000, 95, 2725-2727.	0.6	12
287	Rituximab in chronic lymphocytic leukemia. Advances in Therapy, 2011, 28, 534-554.	1.3	12
288	An Ongoing Phase 1/2a Study of ABT-263; Pharmacokinetics (PK), Safety and Anti-Tumor Activity in Patients (pts) with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) Blood, 2009, 114, 883-883.	0.6	12

#	Article	IF	CITATIONS
289	Preliminary Results of a Phase II Open-Label, Randomized Study of the BH3 Mimetic Protein Navitoclax (ABT-263) with or without Rituximab for Treatment of Previously Untreated B-Cell Chronic Lymphocytic Leukemia. Blood, 2012, 120, 190-190.	0.6	12
290	Clinical Activity Of Idelalisib (GS-1101), a Selective Inhibitor Of PI3Kδ, In Phase 1 and 2 Trials In Chronic Lymphocytic Leukemia (CLL): Effect Of Del(17p)/TP53 Mutation, Del(11q), IGHV Mutation, and NOTCH1 Mutation. Blood, 2013, 122, 1632-1632.	0.6	12
291	ABT-199 (GDC-0199) combined with rituximab (R) in patients (pts) with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL): Interim results of a phase 1b study Journal of Clinical Oncology, 2014, 32, 7013-7013.	0.8	12
292	Obinutuzumab (GA101) 1,000 mg versus 2,000 mg in patients with chronic lymphocytic leukemia (CLL): Results of the phase II GAGE (GAO4768g) trial Journal of Clinical Oncology, 2014, 32, 7083-7083.	0.8	12
293	Genetic mapping of the BGL idiotypic marker within thelgh-V region. Immunogenetics, 1979, 9, 297-302.	1.2	11
294	Local and systemic effects after adenoviral transfer of the murine granulocyte-macrophage colony-stimulating factor gene into mice. British Journal of Haematology, 2000, 108, 641-652.	1.2	11
295	Immune and cell therapy of hematologic malignancies. International Journal of Hematology, 2002, 76, 269-273.	0.7	11
296	Ofatumumab Combined With Fludarabine and Cyclophosphamide (O-FC) Shows High Activity in Patients With Previously Untreated Chronic Lymphocytic Leukemia: Results From a Randomized, Multicenter, International, Two-Dose, Parallel-Group Phase II Trial. Clinical Lymphoma, Myeloma and Leukemia, 2010, 10, E33-E34.	0.2	11
297	Chemical Biology Strategy Reveals Pathway-Selective Inhibitor of NF-κB Activation Induced by Protein Kinase C. ACS Chemical Biology, 2010, 5, 287-299.	1.6	11
298	A phase I study of escalated dose subcutaneous alemtuzumab given weekly with rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Haematologica, 2013, 98, 964-970.	1.7	11
299	Quantitative Proteomics to Characterize Specific Histone H2A Proteolysis in Chronic Lymphocytic Leukemia and the Myeloid THP-1 Cell Line. International Journal of Molecular Sciences, 2014, 15, 9407-9421.	1.8	11
300	The Cell Surface Receptor CD44: NMRâ€Based Characterization of Putative Ligands. ChemMedChem, 2016, 11, 1097-1106.	1.6	11
301	HNRNPL Restrains miR-155 Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia. Cancers, 2019, 11, 575.	1.7	11
302	Ibrutinib reduces obinutuzumab infusion-related reactions in patients with chronic lymphocytic leukemia and is associated with changes in plasma cytokine levels. Haematologica, 2020, 105, e22-e25.	1.7	11
303	Phase 1/2 study of cirmtuzumab and ibrutinib in mantle cell lymphoma (MCL) or chronic lymphocytic leukemia (CLL) Journal of Clinical Oncology, 2021, 39, 7556-7556.	0.8	11
304	Second interim analysis of a phase 3 study evaluating idelalisib and rituximab for relapsed CLL Journal of Clinical Oncology, 2014, 32, 7012-7012.	0.8	11
305	Long-term efficacy and safety with ibrutinib (ibr) in previously treated chronic lymphocytic leukemia (CLL): Up to four years follow-up of the RESONATE study Journal of Clinical Oncology, 2017, 35, 7510-7510.	0.8	11
306	Ad-ISF35-Transduced Autologous Cells In Combination with Fludarabine, Cyclophosphamide, Rituximab (FCR) Induces Complete and Partial Responses In a Phase 1b Study for Patients with Fludarabine-Refractory and/or Del(17p)/p53-Defective Chronic Lymphocytic Leukemia (CLL). Blood, 2011, 118, 168-168.	0.6	11

#	Article	IF	CITATIONS
307	High expression level of ROR1 and ROR1-signaling associates with venetoclax resistance in chronic lymphocytic leukemia. Leukemia, 2022, 36, 1609-1618.	3.3	11
308	Plasma B-Cell Maturation Antigen Levels are Elevated and Correlate with Disease Activity in Patients with Chronic Lymphocytic Leukemia. Targeted Oncology, 2019, 14, 551-561.	1.7	10
309	Tumour debulking and reduction in predicted risk of tumour lysis syndrome with singleâ€agent ibrutinib in patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2019, 186, 184-188.	1.2	10
310	Polygenic risk score and risk of monoclonal B-cell lymphocytosis in caucasians and risk of chronic lymphocytic leukemia (CLL) in African Americans. Leukemia, 2022, 36, 119-125.	3.3	10
311	Safety and Efficacy Results from a Phase I Trial of Single-Agent Lumiliximab (Anti-CD23 Antibody) for Chronic Lymphocytic Leukemia Blood, 2004, 104, 2503-2503.	0.6	10
312	Pharmacokinetics and Pharmacodynamics from a First-in-Human Phase 1 Dose Escalation Study with Antagonist Anti-CD40 Antibody, HCD122 (Formerly CHIR-12.12), in Patients with Relapsed and Refractory Chronic Lymphocytic Leukemia Blood, 2006, 108, 2837-2837.	0.6	10
313	The Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Sub-Classification of Leukemia: Final Report on 3252 Cases from the International MILE Study Group. Blood, 2008, 112, 753-753.	0.6	10
314	Updated Interim Results of the Safety and Efficacy of Different Lenalidomide Starting Dose Regimens in Patients with Relapsed or Refractory (rel/ref) Chronic Lymphocytic Leukemia (CLL) (CC-5013-CLL-009) Tj ETQq0	000rg/BT/	Ov ed ock 10 T
315	Cirmtuzumab Vedotin (UC-961ADC3), An Anti-ROR1-Monomethyl Auristatin E Antibody-Drug Conjugate, Is a Potential Treatment For ROR1-Positive Leukemia and Solid Tumors. Blood, 2013, 122, 1637-1637.	0.6	10
316	Pattern of Use of Anticoagulation and/or Antiplatelet Agents in Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Single-Agent Ibrutinib Therapy. Blood, 2014, 124, 1990-1990.	0.6	10
317	CD40 activation does not protect chronic lymphocytic leukemia B cells from apoptosis induced by cytotoxic T lymphocytes. Blood, 2000, 95, 3853-3858.	0.6	10
318	Rituximab® and High Dose Methylprednisolone (HDMP) as a First Line Treatment for Patients with Chronic Lymphocytic Leukemia Blood, 2005, 106, 2969-2969.	0.6	10
319	Activation of <i>Notch</i> and <i>Myc</i> Signaling via B-cell–Restricted Depletion of <i>Dnmt3a</i> Generates a Consistent Murine Model of Chronic Lymphocytic Leukemia. Cancer Research, 2021, 81, 6117-6130.	0.4	10
320	Systemic mastocytosis in association with chronic lymphocytic leukemia and plasma cell myeloma. International Journal of Clinical and Experimental Pathology, 2010, 3, 448-57.	0.5	10
321	First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study. Blood, 2021, 138, 68-68.	0.6	10
322	<i>IKZF3</i> Overexpression Phenocopies Gain-of-Function Mutation in Chronic Lymphocytic Leukemia. Blood, 2020, 136, 9-9.	0.6	10
323	Chronic lymphocytic leukemia associated with immunotactoid glomerulopathy: a case report of successful treatment with high-dose methylprednisolone in combination with rituximab followed by alemtuzumab. Leukemia and Lymphoma, 2012, 53, 1835-1838.	0.6	9
324	Durability of Responses on Continuous Therapy and Following Drug Cessation with Venetoclax and Rituximab: Long-Term Follow-up Analysis of a Phase 1b Study in Patients with Relapsed CLL. Blood, 2019, 134, 3036-3036.	0.6	9

#	Article	IF	CITATIONS
325	Interim Analysis of EFC6663, a Multicenter Phase 2 Study of Alvocidib (flavopiridol), Demonstrates Clinical Responses Among Patients with Fludarabine Refractory CLL. Blood, 2010, 116, 58-58.	0.6	9
326	Final Analysis From the International Trial of Single-Agent Ofatumumab In Patients with Fludarabine-Refractory Chronic Lymphocytic Leukemia. Blood, 2010, 116, 921-921.	0.6	9
327	11q Deletion (del11q) Is Not a Prognostic Factor for Adverse Outcomes for Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) Treated with Ibrutinib: Pooled Data from 3 Randomized Phase 3 Studies. Blood, 2016, 128, 2042-2042.	0.6	9
328	Recent Advances in CAR T-Cell Therapy for Patients with Chronic Lymphocytic Leukemia. Cancers, 2022, 14, 1715.	1.7	9
329	MURANO Trial Establishes Feasibility of Time-Limited Venetoclax-Rituximab (VenR) Combination Therapy in Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood, 2018, 132, 184-184.	0.6	8
330	ICOS Is Induced by B Cell Receptor Signalling on Chronic Lymphocytic Leukemia B Cells Blood, 2004, 104, 969-969.	0.6	8
331	An Ongoing Phase 1 Study of ABT-263; Pharmacokinetics, Safety and Anti-Tumor Activity in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL). Blood, 2008, 112, 3177-3177.	0.6	8
332	Variation in Health-Related Quality of Life by ECOG Performance Status and Fatigue Among Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 4591-4591.	0.6	8
333	BMS-936564 (Anti-CXCR4 Antibody) Induces Specific Leukemia Cell Mobilization and Objective Clinical Responses In CLL Patients Treated Under a Phase I Clinical Trial. Blood, 2013, 122, 4190-4190.	0.6	8
334	Safety and Efficacy of Venetoclax and Obinutuzumab in Patients with Previously Untreated Chronic Lymphocytic Leukemia (CLL) and Coexisting Medical Conditions: Final Results of the Run-in Phase of the Randomized CLL14 Trial (BO25323). Blood, 2016, 128, 2054-2054.	0.6	8
335	Up to 6.5 years (median 4 years) of follow-up of first-line ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma and high-risk genomic features: integrated analysis of two phase 3 studies. Leukemia and Lymphoma, 2022, 63, 1375-1386.	0.6	8
336	Sequential modulation of growth factors: A novel strategy for adoptive immunotherapy of acute myeloid leukemia. Biology of Blood and Marrow Transplantation, 2002, 8, 557-568.	2.0	7
337	Analysis of <i>CLLU1</i> expression levels before and after therapy in patients with chronic lymphocytic leukemia. European Journal of Haematology, 2011, 86, 405-411.	1.1	7
338	Durable remissions with obinutuzumab-based chemoimmunotherapy: long-term follow-up of the phase 1b GALTON trial in CLL. Blood, 2019, 133, 990-992.	0.6	7
339	Restricted Expression of the Orphan Tyrosine Kinase Receptor ROR1 in Chronic Lymphocytic Leukemia Blood, 2004, 104, 772-772.	0.6	7
340	A Multi-Center and Multi-National Program To Assess the Clinical Accuracy of the Molecular Subclassification of Leukemia by Gene Expression Profiling Blood, 2005, 106, 757-757.	0.6	7
341	Correlation Between Serum Ofatumumab Concentrations, Baseline Patient Characteristics and Clinical Outcomes in Patients with Fludarabine-Refractory Chronic Lymphocytic Leukemia (CLL) Treated with Single-Agent Ofatumumab Blood, 2009, 114, 3433-3433.	0.6	7
342	Integrated and Long-Term Safety Analysis of Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL). Blood, 2016, 128, 4383-4383.	0.6	7

#	Article	IF	CITATIONS
343	Genetic variation in phosphodiesterase (PDE) 7B in chronic lymphocytic leukemia: overview of genetic variants of cyclic nucleotide PDEs in human disease. Journal of Human Genetics, 2011, 56, 676-681.	1.1	6
344	Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia. Cancer Journal (Sudbury, Mass), 2021, 27, 306-313.	1.0	6
345	IgVH Mutational Status Does Not Affect Complete Remission Rate but Is Associated with Reduced Remission Duration in CLL Patients Treated with Fludarabine, Cyclophosphamide and Rituximab (FCR)-Based Therapy Blood, 2007, 110, 753-753.	0.6	6
346	Efficacy of idelalisib in CLL subpopulations harboring del(17p) and other adverse prognostic factors: Results from a phase 3, randomized, double-blind, placebo-controlled trial Journal of Clinical Oncology, 2014, 32, 7011-7011.	0.8	6
347	Expression of Lymphocyte Activation Gene 3 (LAG-3/CD223) by Chronic Lymphocytic Leukemia B Cells Blood, 2005, 106, 2952-2952.	0.6	6
348	Advances in classification and therapy of indolent B-cell malignancies. Seminars in Oncology, 2002, 29, 98-104.	0.8	6
349	B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. HemaSphere, 2022, 6, e722.	1.2	6
350	Adenovirus transduction to effect CD40 signalling improves the immune stimulatory activity of myeloma cells. British Journal of Haematology, 2002, 118, 506-513.	1.2	5
351	Response: Letters regarding Blood. 2008;111:5446-5456 by Hanson et al and Mulligan et al. Blood, 2009, 113, 6497-6498.	0.6	5
352	Analyses of Recombinant Stereotypic IGHV3-21–Encoded Antibodies Expressed in Chronic Lymphocytic Leukemia. Journal of Immunology, 2011, 186, 6338-6344.	0.4	5
353	Intratumoral Injection of Ad-ISF35 (Chimeric CD154) Breaks Tolerance and Induces Lymphoma Tumor Regression. Human Gene Therapy, 2015, 26, 14-25.	1.4	5
354	Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Practice and Research in Clinical Haematology, 2016, 29, 15-29.	0.7	5
355	Dynamic changes in <scp>CCL</scp> 3 and <scp>CCL</scp> 4 plasma concentrations in patients with chronic lymphocytic leukaemia managed with observation. British Journal of Haematology, 2018, 180, 597-600.	1.2	5
356	Survival adjusting for crossover: phase 3 study of ibrutinib <i>vs</i> . chlorambucil in older patients with untreated chronic lymphocytic leukemia/small lymphocytic lymphoma. Haematologica, 2018, 103, e249-e251.	1.7	5
357	Genetic dynamics in untreated CLL patients with either stable or progressive disease: a longitudinal study. Journal of Hematology and Oncology, 2019, 12, 114.	6.9	5
358	A cross-trial comparison of single-agent ibrutinib versus chlorambucil-obinutuzumab in previously untreated patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. Haematologica, 2020, 105, e164-e168.	1.7	5
359	Durability of Responses on Continuous Therapy and Following Drug Cessation in Deep Responders with Venetoclax and Rituximab. Blood, 2018, 132, 183-183.	0.6	5
360	Development of Cirmtuzumab Antibody-Drug Conjugates (ADCs) Targeting Receptor Tyrosine Kinase-like Orphan Receptor 1 (ROR1). Blood, 2018, 132, 1862-1862.	0.6	5

#	Article	IF	CITATIONS
361	Association Between the Proficiency of B-Cell Receptor Signaling and the Relative Expression Levels of ZAP-70, SHIP-1, and Mir-155 in Chronic Lymphocytic Leukemia. Blood, 2008, 112, 3155-3155.	0.6	5
362	Lenalidomide and Rituximab for the Initial Treatment of Patients with Chronic Lymphocytic Leukemia (CLL) A Multicenter Study of the CLL Research Consortium. Blood, 2011, 118, 291-291.	0.6	5
363	MEDI-551, a Humanized Monoclonal Anti-CD19, in Adults with Relapsed or Refractory Advanced B-Cell Malignancies: Results From a Phase 1/2 Study. Blood, 2012, 120, 3677-3677.	0.6	5
364	Randomized comparison of ibrutinib versus ofatumumab in relapsed or refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma: Results from the phase III RESONATE trial Journal of Clinical Oncology, 2014, 32, LBA7008-LBA7008.	0.8	5
365	High Level Phosphatase Activity Revealed in Chronic Lymphocytic Leukemia Cells That Use Mutated Immunoglobulin Heavy Chain Variable Region Genes and Lack High-Level Expression of the Zeta-Associated Protein 70 (ZAP-70) Blood, 2007, 110, 743-743.	0.6	5
366	Assessment of the Clonal Dynamics of Acquired Mutations in Patients (Pts) with Relapsed/Refractory Chronic Lymphocytic Leukemia (R/R CLL) Treated in the Randomized Phase 3 Murano Trial Supports Venetoclax-Rituximab (VenR) Fixed-Duration Combination Treatment (Tx). Blood, 2021, 138, 1548-1548.	0.6	5
367	Expression of an Ig VHGene, 51p1, Is Proportional to Its Germline Gene Copy Number. Annals of the New York Academy of Sciences, 1997, 815, 478-480.	1.8	4
368	Extending genetic vaccines with chemokines. Nature Biotechnology, 1999, 17, 226-227.	9.4	4
369	Autoantibodies against p53 are associated with chromosome 17p deletions in chronic lymphocytic leukemia. Leukemia Research, 2011, 35, 965-967.	0.4	4
370	Increased aldehyde dehydrogenase activity in high-risk chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 400-402.	0.6	4
371	An open-label, single-arm, phase 1 study to assess biomarker effects, efficacy and safety of ofatumumab in patients with refractory chronic lymphocytic leukemia. Leukemia and Lymphoma, 2015, 56, 2819-2825.	0.6	4
372	A phase II study of the combination of rituximab and granulocyte macrophage colony stimulating factor as treatment of patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2015, 56, 1878-1880.	0.6	4
373	Lenalidomide Abrogates the Protective Influence of Nurse-Like Cells on Primary Chronic Lymphocytic Leukemia Cells In Vitro Blood, 2007, 110, 3116-3116.	0.6	4
374	Combined ROR1 and CD160 Detection For Improved Minimal Residual Disease In Patients With Chronic Lymphocytic Leukemia (CLL). Blood, 2013, 122, 2572-2572.	0.6	4
375	A Phase Ib/II Study of Ibrutinib in Combination with Obinutuzumab-Gazyva As First-Line Treatment for Patients with Chronic Lymphocytic Leukemia > 65 Years Old or with Coexisting Conditions. Blood, 2016, 128, 2048-2048.	0.6	4
376	Comparative Evaluation of Prognostic Factors That Assess the Natural History of Chronic Lymphocytic Leukemia. Blood, 2016, 128, 968-968.	0.6	4
377	Targeting of Chronic Lymphocytic Leukemia B Cells with a Novel Monoclonal Antibody to ROR1. Blood, 2011, 118, 984-984.	0.6	4
378	Addition of Rituximab Abrogates Ibrutinib-Induced Lymphocytosis and Promotes More Rapid Decrease in Absolute Lymphocyte Counts in Patients with Relapsed Chronic Lymphocytic Leukemia. Blood, 2014, 124, 1998-1998.	0.6	4

#	Article	IF	CITATIONS
379	Outcomes of First-Line Ibrutinib in Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) and High-Risk Genomic Features with up to 6.5 Years Follow-up: Integrated Analysis of Two Phase 3 Studies (RESONATE-2 and iLLUMINATE). Blood, 2020, 136, 25-26.	0.6	4
380	Value of Computed Tomography in the Monitoring of Patients With Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2007, 25, 5556-5556.	0.8	3
381	Associations of ofatumumab exposure and treatment outcomes in patients with untreated CLL receiving chemoimmunotherapy. Leukemia and Lymphoma, 2017, 58, 348-356.	0.6	3
382	Single-Agent Ibrutinib Versus Chlorambucil-Obinutuzumab As First-Line Treatment in Patients with Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma (CLL/SLL): Results of a Cross-Trial Comparison. Blood, 2018, 132, 5565-5565.	0.6	3
383	AT 101, an Inhibitor of Bcl-2 Family Members Is Cytotoxic to a Heterogeneous Group of CLL Samples and Synergistic with Rituximab Blood, 2005, 106, 2979-2979.	0.6	3
384	An International Multi-Center Study To Define the Application of Microarrays in the Diagnosis and Subclassification of Leukemia (MILE Study): Interim Analysis Based on 1,889 Patients Achieves 95.4% Prediction Accuracy Blood, 2006, 108, 103-103.	0.6	3
385	AT-101, a Pan-Inhibitor of Bcl-2 Family Anti-Apoptotic Proteins Antagonizes the Protective Effect Conferred by Nurselike Cells on Primary Chronic Lymphocytic Leukemia (CLL) Cells Blood, 2006, 108, 2100-2100.	0.6	3
386	Self-Administered, Subcutaneous (SQ) Alemtuzumab To Eliminate Residual Disease in Patients (pts) with CLL Blood, 2006, 108, 2839-2839.	0.6	3
387	Dasatinib Induces Apoptosis in Chronic Lymphocytic Leukemia and Enhances the Activity of Rituximab and Fludarabine Blood, 2007, 110, 1116-1116.	0.6	3
388	Percentage of Smudge Cells on Blood Smear Predicts Prognosis in Chronic Lymphocytic Leukemia: A Multicenter Study Blood, 2007, 110, 745-745.	0.6	3
389	Ofatumumab and High-Dose Methylprednisolone Is An Effective Salvage Treatment for Heavily Pretreated, Unfit or Refractory Patients with Chronic Lymphocytic Leukemia: Single Institution Experience. Blood, 2010, 116, 4638-4638.	0.6	3
390	Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic Mutations. Blood, 2011, 118, 288-288.	0.6	3
391	The BCL-2-Specific BH3-Mimetic ABT-199 (GDC-0199) Is Active and Well-Tolerated in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Interim Results of a Phase I First-in-Human Study. Blood, 2012, 120, 3923-3923.	0.6	3
392	TP53 Mutation or Deletion and Efficacy with Single-Agent Lenalidomide in Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) (CC-5013-CLL-009 Study). Blood, 2013, 122, 1638-1638.	0.6	3
393	A Phase Ib/II Study of Combined Obinutuzumab (Gazyva) and High-Dose Methylprednisolone (HDMP) As Treatment for Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2016, 128, 2051-2051.	0.6	3
394	Health-related quality of life (HRQL) impact of idelalisib (IDELA) in patients (pts) with relapsed chronic lymphocytic leukemia (CLL): Phase 3 results Journal of Clinical Oncology, 2014, 32, 7099-7099.	0.8	3
395	Multicenter, phase III, open-label, randomized study in relapsed/refractory CLL to evaluate the benefit of GDC-0199 (ABT-199) plus rituximab compared with bendamustine plus rituximab Journal of Clinical Oncology, 2014, 32, TPS7120-TPS7120.	0.8	3
396	Efficient Gene Delivery to Chronic Lymphocytic Leukemia (CLL) Cells with Microbubbles Bearing ROR1 Antibody. Blood, 2011, 118, 2857-2857.	0.6	3

#	Article	IF	CITATIONS
397	A large fraction of trisomy 12, 17p ^{â^'} , and 11q ^{â^'} CLL cases carry unidentified microdeletions of <i>miR-15a/16-1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
398	Antigen receptor signaling in CLL—is the line dead?. Blood, 2003, 101, 788-788.	0.6	2
399	**102 Chemoimmunotherapy with Ofatumumab, Fludarabine and Cyclophosphamide (O-FC) in Previously Untreated Patients with Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S119-S120.	0.2	2
400	First Prospective Data on Impact of Minimal Residual Disease on Long-Term Clinical Outcomes after Venetoclax Plus Rituximab Versus Bendamustine Plus Rituximab: Phase III MURANO Study. Blood, 2018, 132, 185-185.	0.6	2
401	Anti-CD20 Antibody Rituximab and Anti-CD23 Antibody IDEC-152 Induce Apoptosis of Malignant B-Cells in Combination with Chemical Antagonists of XIAP Blood, 2004, 104, 1401-1401.	0.6	2
402	Pharmacokinetics of Single-Agent Lumiliximab (Anti-CD23 Antibody) in Patients with Chronic Lymphocytic Leukemia Blood, 2004, 104, 4831-4831.	0.6	2
403	Pro-Apoptotic Effects on CLL (Chronic Lymphocytic Leukemia) of ABT-737, a Novel Fully Synthetic Bcl-2/Bcl-XL Antagonist Blood, 2004, 104, 952-952.	0.6	2
404	Membrane-Stable, Humanized CD154 Gene Therapy for Patients with CLL Blood, 2006, 108, 2104-2104.	0.6	2
405	Relative Value of CD38 and ZAP-70 Versus Immunoglobulin Mutation Status in Predicting Early Disease Progression in Chronic Lymphocytic Leukemia Blood, 2006, 108, 2778-2778.	0.6	2
406	Combination of Oxaliplatin, Fludarabine, Cytarabine, and Rituximab in Richter's Syndrome and Fludarabine-Refractory Chronic Lymphocytic Leukemia Blood, 2006, 108, 2825-2825.	0.6	2
407	ZAP-70 Enhances IgM Signaling in Chronic Lymphocytic Leukemia Cells Independent of Its Tyrosine Kinase Activity Blood, 2006, 108, 585-585.	0.6	2
408	Characteristics of Familial CLL Evaluated in the CLL Research Consortium Cohort. Blood, 2008, 112, 3125-3125.	0.6	2
409	Oxaliplatin, Fludarabine, Cytarabine, and Rituximab Combination Therapy Induces High Response Rates in Agressive Chronic Lymphocytic Leukemia (CLL) and Richter's Syndrome (RS) Blood, 2009, 114, 3443-3443.	0.6	2
410	Correlation of Leukemia-Cell Birth Rate Measured by Heavy Water Labeling with Other Prognostic Markers in Early Stage Chronic Lymphocytic Leukemia Blood, 2009, 114, 60-60.	0.6	2
411	Results of a Phase I-II Clinical Trial of Oxaliplatin, Fludarabine, Cytarabine, and Rituximab (OFAR) Combination Therapy In Patients with Aggressive, Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL) and Richter Syndrome (RS). Blood, 2010, 116, 923-923.	0.6	2
412	Agelastatin A (AgA), a Marine Sponge Derived Alkaloid, Inhibits Wnt/Beta-Catenin Signaling and Selectively Induces Apoptosis in Chronic Lymphocytic Leukemia Independently of p53. Blood, 2011, 118, 1786-1786.	0.6	2
413	Correlations Between Ofatumumab Exposure and Treatment Outcomes for Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Frontline Ofatumumab, Fludarabine, and Cyclophosphamide Chemoimmunotherapy. Blood, 2011, 118, 1793-1793.	0.6	2
414	Interim Results for the Safety and Efficacy of Different Lenalidomide Starting Dose Regimens in Subjects with Relapsed or Refractory Chronic Lymphocytic Leukemia (CC-5013-CLL-009 Study). Blood, 2011, 118, 2859-2859.	0.6	2

#	Article	IF	CITATIONS
415	A Highly Selective Anti-ROR1 Monoclonal Antibody Inhibits Human Acute Myeloid Leukemia CD34+ Cell Survival and Self-Renewal Blood, 2012, 120, 2560-2560.	0.6	2
416	Fd-895 and Pladienolide B Inhibit mRNA Splicing and Induce Apoptosis in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3890-3890.	0.6	2
417	Variation in Health-Related Quality of Life by Line of Therapy of Patients with Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3926-3926.	0.6	2
418	A6 Peptide Is Selectively Cytotoxic For Chronic Lymphocytic Leukemia Cells. Blood, 2013, 122, 5303-5303.	0.6	2
419	Demographics By Age Group (AG) and Line of Therapy (LOT) in Chronic Lymphocytic Leukemia (CLL) Patients (Pts) Treated in US Practices from the Connect® CLL Registry. Blood, 2014, 124, 3338-3338.	0.6	2
420	Inhibition of Wnt Signaling By Dimethyl Fumarate Results in in Vitro and in Vivo Clearance of Chronic Lymphocytic Leukemia Cells and Has Additive Activity with Ibrutinib. Blood, 2014, 124, 4683-4683.	0.6	2
421	Kinetic Measurement of Leukemia-Cell Proliferation Rate By Deuterium Labeling Predicts Time to Initial Treatment of Patients with Chronic Lymphocytic Leukemia. Blood, 2014, 124, 829-829.	0.6	2
422	Cirmtuzumab (UC-961), a First-in-Class Anti-ROR1 Monoclonal Antibody: Planned Interim Analysis of Initial Phase 1 Cohorts. Blood, 2015, 126, 1736-1736.	0.6	2
423	The Aberrantly Expressed Long Noncoding RNA, TRERNA1, Predicts for Aggressive Disease in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2911-2911.	0.6	2
424	ROR1 Negative Chronic Lymphocytic Leukemia (CLL) Have a Distinctive Gene Expression Signature and May Represent an Indolent-Disease Subtype. Blood, 2015, 126, 2932-2932.	0.6	2
425	Targeting the CXCR4-CXCL12 Pathway Using an Anti-CXCR4 lgG1 Antibody (PF-06747143) in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 4162-4162.	0.6	2
426	Results from the International, Randomized Phase 3 Study of Ibrutinib Versus Chlorambucil in Patients 65 Years and Older with Treatment-NaÃīve CLL/SLL (RESONATE-2TM). Blood, 2015, 126, 495-495.	0.6	2
427	Wnt5a Induces ROR1 to Complex with HS1, Which Undergoes Tyrosine Phosphorylation and Contributes to Planar-Cell-Polarity Migration in Chronic Lymphocytic Leukemia. Blood, 2016, 128, 301-301.	0.6	2
428	Randomized comparison of ibrutinib versus ofatumumab in relapsed or refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma: Results from the phase III RESONATE trial Journal of Clinical Oncology, 2014, 32, LBA7008-LBA7008.	0.8	2
429	Prognostic testing patterns in CLL pts treated in U.S. practices from the Connect CLL registry Journal of Clinical Oncology, 2015, 33, 7013-7013.	0.8	2
430	Immune Therapy for Chronic Lymphocytic Leukemia Induces the Antibody Response Against a Novel Tumor-Associated Antigen, the Orphan Tyrosine Kinase Receptor ROR1 Blood, 2005, 106, 2976-2976.	0.6	2
431	Epac1, an antiâ€apoptotic protein, is upâ€regulated in chronic lymphocytic leukemic Bâ€cells. FASEB Journal, 2011, 25, 1090.1.	0.2	2
432	A Complementary Role of High Throughput Sequencing and Multiparameter Cytometry for Minimal Residual Disease (MRD) Detection in Chronic Lymphocytic Leukemia (CLL):an European Research Initiative (ERIC) Study. Blood, 2014, 124, 1976-1976.	0.6	2

#	Article	IF	CITATIONS
433	Comprehensive Bulk and Single Cell Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2906-2906.	0.6	2
434	Cirmtuzumab Inhibits Non-Canonical Wnt Signaling without Enhancing Canonical Wnt/β-Catenin Signaling in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 2652-2652.	0.6	2
435	Investigating the Addition of Ianalumab (VAY736) to Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL) on Ibrutinib Therapy: Results from a Phase Ib Study. Blood, 2021, 138, 2631-2631.	0.6	2
436	Ibrutinib plus Obinutuzumab as Frontline Therapy for Chronic Lymphocytic Leukemia Is Associated with a Lower Rate of Infusion-Related Reactions and with Sustained Remissions after Ibrutinib Discontinuation: A Single-Arm, Open-Label, Phase 1b/2 Clinical Trial NCT0231576. Advances in Hematology, 2022, 2022, 1-8.	0.6	2
437	Immunoglobulin Gene Rearrangement and Expression in B-CLL. Leukemia and Lymphoma, 1991, 5, 39-45.	0.6	1
438	Gene Therapy for Cancer. Stem Cells and Development, 1993, 2, 367-372.	1.0	1
439	Response: Defining response criteria in CLL patients treated in clinical research trials. Blood, 2010, 116, 1817-1818.	0.6	1
440	Interview: Chronic lymphocytic leukemia: treating an incurable disease. International Journal of Hematologic Oncology, 2013, 2, 203-205.	0.7	1
441	A Phase 1 Clinical Trial of Cirmtuzumab, a First-in-Class ROR1 Inhibiting Antibody, for the Treatment of Patients with Relapsed or Refractory CLL: Interim Analysis. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S44.	0.2	1
442	Phase 2 Study of Acalabrutinib in Ibrutinib-Intolerant Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S282-S283.	0.2	1
443	SOHO State of the Art Updates and Next Questions: The Conundrum in Assessing the Therapy Response of Patients With Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 321-325.	0.2	1
444	Genome and Exome-Wide Studies Reveal Potential Predictive Efficacy Markers for Venetoclax and Rituximab (VenR) in Relapsed/Refractory Chronic Lymphocytic Leukemia (R/R CLL): Subgroup Analyses of the Murano Trial. Blood, 2019, 134, 356-356.	0.6	1
445	CD40-Activation of Chronic Lymphocytic Leukemia Cells Induces Latent Sensitivity to Fas/TRAIL-Mediated Apoptosis Via a P53-Independent, C-Abl-Dependent Pathway Blood, 2004, 104, 342-342.	0.6	1
446	Inhibition of XIAP Enhances Specific Cytotoxic T Lymphocyte (CTL) Killing and CD20-Directed Antibody-Dependent Cellular Cytotoxicity of Chronic Lymphocytic Leukemia B Cells Blood, 2004, 104, 3475-3475.	0.6	1
447	Highly Efficient Gene-Transfer into Chronic Lymphocytic Leukemia Cells Using Adenovirus Type 35 Genetic Vectors Blood, 2005, 106, 2109-2109.	0.6	1
448	FCRL2 Expression Is Predictive of IgVH Mutation Status and Clinical Progression in Chronic Lymphocytic Leukemia Blood, 2007, 110, 488-488.	0.6	1
449	A Phase I Study of Escalated Dose Subcutaneous Alemtuzumab Given Weekly with Rituximab In Relapsed CLL/SLL Blood, 2010, 116, 1381-1381.	0.6	1
450	Phenotypic Changes Associated with Acute Reductions In Leukemia Cell Counts In Patients with Chronic Lymphocytic Leukemia (CLL) Receiving Lenalidomide as Initial Therapy. Blood, 2010, 116, 59-59.	0.6	1

#	Article	IF	CITATIONS
451	Patterns of Care for Patients with Chronic Lymphocytic Leukemia (CLL): The Connect® CLL Disease Registry. Blood, 2011, 118, 2864-2864.	0.6	1
452	Subnetwork-Based Analysis of Chronic Lymphocytic Leukemia Identifies Pathways That Associate with Disease Progression,. Blood, 2011, 118, 3564-3564.	0.6	1
453	Human ROR1 Activates AKT and Accelerates Leukemia Cell Proliferation. Blood, 2012, 120, 3872-3872.	0.6	1
454	Preclinical Development Of ROR1 Peptide Based Vaccine With Activity Against Chronic Lymphocytic Leukemia In ROR1 Transgenic Mice. Blood, 2013, 122, 4174-4174.	0.6	1
455	Lenalidomide and Rituximab For The Treatment Of Patients With Relapsed Or Refractory Chronic Lymphocytic Leukemia: Results Of Planned Interim Analysis. Blood, 2013, 122, 5299-5299.	0.6	1
456	High-Level Expression of ROR1 Associates with Early Disease Progression in Patients with Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1713-1713.	0.6	1
457	Progressive Epigenetic Programming during B Cell Maturation Is Reflected in a Continuum of Epigenetic Disease Phenotypes in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2436-2436.	0.6	1
458	Plasma B-Cell Maturation Antigen Levels Are Elevated and Correlate with Disease Activity in Patients with Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2931-2931.	0.6	1
459	A Phase Ib/II Study of Combined Obinutuzumab and High-Dose Methylprednisolone (HDMP) As Treatment for Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2015, 126, 4160-4160.	0.6	1
460	Cirmtuzumab Targets ROR1 to Inhibit Ibrutinib-Resistant, Wnt5a-Induced Rac1 Activation in Chronic Lymphocytic Leukemia. Blood, 2016, 128, 2034-2034.	0.6	1
461	Immunotherapeutic Targeting of ROR1-Dependent, Non-Canonical Wnt5a-Signaling By Cirmtuzumab: A First-in-Human Phase I Trial for Patients with Intractable Chronic Lymphocytic Leukemia. Blood, 2016, 128, 3224-3224.	0.6	1
462	Wnt5a Induces Association of ROR1 with 14-3-3ζ to Enhance Chemotaxis and Proliferation in Chronic Lymphocytic Leukemia. Blood, 2016, 128, 349-349.	0.6	1
463	Expression of Ig-β (CD79b) by chronic lymphocytic leukemia B cells that lack immunoglobulin heavy-chain allelic exclusion. Blood, 2000, 95, 2725-2727.	0.6	1
464	CD38 Compared with ZAP-70 or Immmunoglobulin Mutation Status as Predictor of Disease Progression in Chronic Lymphocytic Leukemia Blood, 2004, 104, 2805-2805.	0.6	1
465	BAFF Support Survival of Chronic Lymphocytic Leukemia B Cells by a Pathway Independent of Stromal Derived Factor-1α Blood, 2004, 104, 1908-1908.	0.6	1
466	Expression of T Cell Co-Stimulator (ICOS) and Its Ligand and Disease Progression in B-Cell Chronic Lymphocytic Leukemia Blood, 2005, 106, 2943-2943.	0.6	1
467	B Cell Activating Factor and c-Myc Regulate the Progression of Chronic Lymphocytic Leukemia Blood, 2009, 114, 359-359.	0.6	1
468	CCL3 and CCL4 Plasma Levels Correlate with Established Prognostic Markers in Chronic Lymphocytic Leukemia: Towards a Simple, ELISA-Based Assay for Risk Assessment Blood, 2009, 114, 358-358.	0.6	1

#	Article	IF	CITATIONS
469	Ad-ISF35 Intratumoral Administration Induces a Bystander Effect and Immune-Mediated Tumor Rejection with a Safe Vector Biodistribution and Toxicology Profile In a NHL Mouse Model Blood, 2010, 116, 1470-1470.	0.6	1
470	CXCL12 Enhances Survival of Chronic Lymphocytic Leukemia Cells Via a RAF-Dependent Pathway That Can Be Inhibited by Sorafenib. Blood, 2010, 116, 2445-2445.	0.6	1
471	In Vitro Propagation of Mesenchymal Stromal Cells From Marrow Aspirates of Patients with Chronic Lymphocytic Leukemia Is Dependent Upon Physiologic Oxygen Tension. Blood, 2011, 118, 2839-2839.	0.6	1
472	Selective Clearance of Chronic Lymphocytic Leukemia Cells in Vivo Following Treatment with UC99961, an Anti-ROR1 Monoclonal Antibody. Blood, 2012, 120, 3886-3886.	0.6	1
473	Targeting Chronic Lymphocytic Leukemia With DNA Nanoparticles. Blood, 2013, 122, 1623-1623.	0.6	1
474	Analysis of Prognostic Factors Predictive of Complete Response (CR) to Ibrutinib in Patients with CLL/SLL. Blood, 2015, 126, 4153-4153.	0.6	1
475	Single Cell Transcriptomic Characterization of the Immune Microenvironment in Naturally Progressing Chronic Lymphocytic Leukemia (CLL). Blood, 2018, 132, 3112-3112.	0.6	1
476	Wnt5a Induces Association of ROR1 with Ca2+/Calmodulin-Dependent Protein Kinase II and ROR1-Dependent Calcium Influx in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 1846-1846.	0.6	1
477	Treatment Patterns and Outcomes of Patients with CLL Treated with Chemoimmuno- and Novel Agent-Based Therapy: A Multicenter Study. Blood, 2018, 132, 4759-4759.	0.6	1
478	Wnt5a Induces ROR1-Dependent Upregulation of MMP9 and Enhanced Invasiveness in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 4274-4274.	0.6	1
479	Cirmtuzumab, a ROR1 Targeted Mab, Reverses Cancer Stemness, and Its Combination with Ibrutinib Is Safe and Effective: Planned Analysis of the Cirll Phase 1/2 Trial for CLL and MCL. Blood, 2019, 134, 1755-1755.	0.6	1
480	Phase 1b/2 Study of Cirmtuzumab and Ibrutinib in Mantle Cell Lymphoma (MCL) or Chronic Lymphocytic Leukemia (CLL). Blood, 2021, 138, 3534-3534.	0.6	1
481	Wnt5a Induces ROR1 to Interact Grb2 to Enhance Ras Activation in Chronic Lymphocytic Leukemia. Blood, 2021, 138, 247-247.	0.6	1
482	5.54 Ad-ISF35 Transduced Autologous Cells Induce Chemosensitization Activity and Complete Responses in Fludarabine-Refractory and/or del(17p)/p53-Defective Chronic Lymphocytic Leukemia Patients. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S281-S282.	0.2	0
483	5.55 Chronic Lymphocytic Leukemia Associated with Glomerular Disease: A Case Report of Successful Treatment with High-Dose Methyl-Prednisolone in combination with Rituximab Followed by Alemtuzumab. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S282-S283.	0.2	0
484	Outcomes with Ibrutinib by Line of Therapy in Patients with CLL: Analyses from Phase 3 Data. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S43.	0.2	0
485	Phase 3 Study of Ibrutinib versus Chlorambucil in Patients ≥65 Years with Treatment-NaÃ⁻ve Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL). Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S45-S46.	0.2	0
486	Cross-Study Multivariable Analysis of the Impact of Adding Rituximab to Venetoclax on the Depth and Durability of Response in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S51.	0.2	0

#	Article	IF	CITATIONS
487	Five-Year Follow-Up After Ibrutinib Therapy for First-Line Treatment of Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S274.	0.2	о
488	Poster: CLL-045: Long-Term Follow-up, Up to 7 Years, in the RESONATE-2 Study of First-Line Ibrutinib Treatment for Chronic Lymphocytic Leukemia (CLL). Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S221.	0.2	0
489	Tcl-1 Inhibits Nuclear Export of TR3 and Is Highly Expressed in ZAP70-Positive CLL B-Cells Blood, 2004, 104, 967-967.	0.6	0
490	Expression of ZAP-70 in B Cell Chronic Lymphocytic Leukemia Is Associated with a Greater Capacity To Activate NFI°B Following Ligation of Surface Immunoglobulin Blood, 2004, 104, 2812-2812.	0.6	0
491	A Phase I/II Trial of Xcellerated T Cellsâ,"¢ in Patients with Chronic Lymphocytic Leukemia Blood, 2004, 104, 2508-2508.	0.6	0
492	Rituximab® and High Dose Methylprednisolone (HDMP) for the Treatment of Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia Blood, 2004, 104, 2518-2518.	0.6	0
493	Nurselike Cells in Chronic Lymphocytic Leukemia (CLL) Express Both BAFF and APRIL that Protect CLL B Cells from Spontaneous Apoptosis by Paracrine Manner Blood, 2004, 104, 965-965.	0.6	0
494	Inhibition of XIAP Renders Newly CD40-Activated Chronic Lymphocytic Leukemia Cells Sensitive to Fas (CD95) Mediated Apoptosis Blood, 2004, 104, 3474-3474.	0.6	0
495	ZAP-70 Expressed in CLL Is an Hsp90 Client Protein and Its Level of Expression Can Be Downregulated by Specific Hsp90 Inhibitors Blood, 2004, 104, 2803-2803.	0.6	0
496	Chronic Lymphocytic Leukemia Cells May Become Less Dependent on Nurse-Like Cells during Later Stages of Disease Blood, 2004, 104, 4805-4805.	0.6	0
497	R-(â°')-Gossypol (AT101) Binds to Bcl-2 Family Proteins and Induces Apoptosis in CLL Blood, 2005, 106, 2978-2978.	0.6	0
498	Activation of AKT and Enhanced Resistance to Apoptosis Induced by Surface IgM Ligation in ZAP-70-Positive Chronic Lymphocytic Leukemia B Cells Blood, 2005, 106, 2940-2940.	0.6	0
499	Differential Expression Profile of the Proteome and Transcriptome in Aggressive and Indolent Chronic Lymphocytic Leukemia Blood, 2005, 106, 2101-2101.	0.6	Ο
500	BAFF and APRIL Protect CLL B Cells from Apoptosis through Activation of NF-κB Canonical Pathway Blood, 2005, 106, 179-179.	0.6	0
501	A Bioinformatic Approach to CLL IGHV Sequence Analysis Identifies Extensive Ig Sequence Archetypes among BothMutated and Unmutated Sequences Blood, 2005, 106, 176-176.	0.6	Ο
502	Restricted Pairing of Immunoglobulin Heavy and Light Chains Expressed by Chronic Lymphocytic Leukemia B Cells Is Predicated on the Heavy Chain CDR3 Blood, 2005, 106, 2094-2094.	0.6	0
503	Elevated expression of PDE7B in Chronic Lymphocytic Leukemia. FASEB Journal, 2006, 20, LB120.	0.2	0
504	Expression of ZAP-70 in Chronic Lymphocytic Leukemia Cells Enhances CD79b Phosphorylation Following Surface IgM Ligation Blood, 2006, 108, 2799-2799.	0.6	0

#	Article	IF	CITATIONS
505	Study of VH3-21 in a Large Cohort of Chronic Lymphocytic Leukemia Patients Reveals Evidence for Antigen Selection and Confirms Its Predictive Value for Early Disease Progression Blood, 2006, 108, 2774-2774.	0.6	0
506	Chronic Lymphocytic Leukemia Cells Can Induce Monocytes to Express High Levels of BAFF and Assume Properties of Nurselike Cells In Vitro Blood, 2006, 108, 588-588.	0.6	0
507	Ethacrynic Acid Can Inhibit Wnt/β-Catenin Signaling and Induce Apoptosis in Chronic Lymphocytic Leukemia Cells Blood, 2006, 108, 2099-2099.	0.6	0
508	Chronic Lymphocytic Leukemia Cells Have Increased Expression of Cyclic Nucleotide Phosphodiesterase 7B, Which May Serve as Disease-Specific Therapeutic Target Blood, 2006, 108, 2802-2802.	0.6	0
509	Expression of ROR1 in Chronic Lymphocytic Leukemia Cells Enhances Cells Survival by Wnt5a Signaling Blood, 2007, 110, 340-340.	0.6	0
510	BAFF Accelerates Development of Chronic Lymphocytic Leukemia in TCL1 Transgenic Mice Blood, 2007, 110, 1117-1117.	0.6	0
511	TCL1 Expression in Chronic Lymphocytic Leukemia Correlates with the Intensity of 11q Deletions and ZAP-70 Blood, 2007, 110, 2068-2068.	0.6	0
512	Autoantibodies Against p53 Are Associated with p17 Deletions in CLL Blood, 2007, 110, 2066-2066.	0.6	0
513	Stereotypic IGHV3-21/IGLV3-21 Antibodies Expressed in High-Risk Chronic Lymphocytic Leukemia Bind Peptostreptococcus Magnus Protein L. Blood, 2007, 110, 740-740.	0.6	0
514	Chronic Lymphocytic Leukemia Cells Produce a Soluble Factor(s) That Can Induce CD14+ Blood Mononuclear Cells To Assume Properties of Nurselike Cells In Vitro Blood, 2007, 110, 1136-1136.	0.6	0
515	An International Multi-Center Study To Define the Application of Microarray-Based Gene Expression Profiling in the Diagnosis and Sub-Classification of Leukemia (MILE Study): Analysis of Completed Stage I with 2030 Patients Achieved a 95.4% Accuracy Blood, 2007, 110, 3169-3169.	0.6	0
516	KDE Analysis in Chronic Lymphocytic Leukemia Patients with B Cells Expressing IGHV3-21 and Discordant Mutational Status between Heavy and Light Chain Blood, 2007, 110, 1127-1127.	0.6	0
517	Active Immune Gene Therapy Using ISF35: Responses Associated with Priming for Death Receptor-Induced Apoptosis and Sensitivity to Fludarabine in Patients with CLL and Del 17p. Blood, 2008, 112, 3530-3530.	0.6	0
518	CLLU1, a Novel Molecular Marker for Minimal Residual Disease Monitoring in Chronic Lymphocytic Leukemia. Blood, 2008, 112, 3158-3158.	0.6	0
519	Predicting Time to Initial Treatment in Early Stage CLL - Integration of Classical and Novel Prognostic Factors Blood, 2008, 112, 2093-2093.	0.6	0
520	The Relative Dependency of Chronic Lymphocytic Leukemia (CLL) Cells on Nurselike Cells for in Vitro Survival Is Associated with Overall Survival in Previously Untreated CLL Patients. Blood, 2008, 112, 4169-4169.	0.6	0
521	Early Events in the Clonal Evolution in Patients with Chronic Lymphocytic Leukemia Carrying TP53 Mutations and 17p Deletion. Blood, 2008, 112, 4165-4165.	0.6	0
522	A Phase I Study of Immune Gene Therapy for Patients with CLL Using Intranodal Injection of ISF35, a Membrane-Stable CD40 Binding Protein Blood, 2008, 112, 2100-2100.	0.6	0

#	Article	IF	CITATIONS
523	Chronic Lymphocytic Leukemia Cells Promote Increased BAFF Expression in Monocytes Partially through TNF-Alpha Leading to Increased CLL Cell Survival. Blood, 2008, 112, 3154-3154.	0.6	0
524	Interactome-Based Molecular Prognosis of Chronic Lymphocytic Leukemia. Blood, 2008, 112, 545-545.	0.6	0
525	Platinum-Based Compounds Induce Expression of p73 and Restores Drug- Sensitivity in p53 Dysfunctional Chronic Lymphocytic Leukemia (CLL) Cells Blood, 2008, 112, 2102-2102.	0.6	0
526	Validation of CLL FISH Panel Scoring by Members of the Chronic Lymphocytic Leukemia Research Consortium Blood, 2008, 112, 1067-1067.	0.6	0
527	Detection of Minimal Residual Disease in Chronic Lymphocytic Leukemia with Monoclonal Antibodies Specific for CD5, CD10, CD19, and ROR1 Blood, 2008, 112, 2079-2079.	0.6	0
528	Plasma Alemtuzumab Levels at End of Treatment Correlate with Response and Response Duration in Patients with CLL Receiving Treatment for Residual Disease Blood, 2008, 112, 2109-2109.	0.6	0
529	Phosphodiesterase 7 (PDE7) and PDE4/7 inhibitors kill chronic lymphocytic leukemia (CLL) cells via a cAMPâ€mitochondrialâ€dependent pathway. FASEB Journal, 2009, 23, .	0.2	0
530	Protein kinase A and Epac (Exchange Protein Activated by cAMP) are Proâ€and Antiâ€Apoptotic Mediators, respectively, in Chronic Lymphocytic Leukemia. FASEB Journal, 2009, 23, 761.11.	0.2	0
531	Comparison of in Vitro Apoptotic Response of Chronic Lymphocytic Leukemia (CLL) Cells to Bcl-2 Antagonist ABT-737 and IAP Antagonist BV6 Blood, 2009, 114, 4386-4386.	0.6	0
532	Ad-ISF35-Transduced Autologous Cells Promote in Vitro and In Vivo Chemosensitization to FCR in Patients with Del(17p) / P53 Defective Chronic Lymphocytic Leukemia Blood, 2009, 114, 376-376.	0.6	0
533	Karyotype Results From CpG Oligodeoxynucleotide Stimulated Chronic Lymphocytic Leukemia (CLL) Cultures Are Consistent Among Laboratories: a CLL Research Consortium (CRC) Study Blood, 2009, 114, 1614-1614.	0.6	0
534	Analysis of the Serum Free Light Chain Ratio and Its Prognostic Value in a Cohort of Patients with Chronic Lymphocytic Leukemia Blood, 2009, 114, 2631-2631.	0.6	0
535	Influence of Mir-155 On B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia Blood, 2009, 114, 2343-2343.	0.6	0
536	Lenalidomide Administered for the Initial Treatment of Chronic Lymphocytic Leukemia (CLL) Patients- In Vivo Modulation of the Leukemia Cell Surface Phenotype and Association with Tumor Flare Reaction (TFR) Blood, 2009, 114, 3440-3440.	0.6	0
537	CD137/4-1BB Is Inducibly Expressed On CLL B Cells through CD40 Signaling Blood, 2009, 114, 1266-1266.	0.6	0
538	Targeting phosphodiesterase 7B and exchange protein directly activated by cAMPâ€1 in chronic lymphocytic leukemia. FASEB Journal, 2010, 24, 965.2.	0.2	0
539	ROR1 Is Expressed on the Surface of Non-Neoplastic Human B-Lymphocyte Precursors (Hematogones) and on a Subset of B Acute Lymphoblastic Leukemia. Blood, 2010, 116, 2735-2735.	0.6	0
540	Longitudinal Genomic Analyses In Chronic Lymphocytic Leukemia (CLL) Patients Reveal Clonal Relationship and Genomic Evolution In Disease Progression and After Therapy. Blood, 2010, 116, 3605-3605.	0.6	0

#	Article	IF	CITATIONS
541	Ad-ISF35- Transduced Autologous Cells Promote In Vitro and In Vivo Chemosensitization to FCR and Durable Complete Responses In Patients with Del(17p)/P53 Defective Chronic Lymphocytic Leukemia Blood, 2010, 116, 1472-1472.	0.6	0
542	The Kinase Inhibitor Sorafenib Can Disrupt the Survival Support Provided by the Microenvironment and Induce Apoptosis of Chronic Lymphocytic Leukemia Cells. Blood, 2010, 116, 47-47.	0.6	0
543	Immune Gene Therapy for Patients with CLL Using Repeat Dose Intranodal Injection of Ad-ISF35, a Replication Incompetent Vector Expressing a Membrane-Stable CD40 Binding Protein Blood, 2010, 116, 1476-1476.	0.6	0
544	Improved Outcome of CLL Patients with Leukemic Clones Expressing Mutated IGHV May Not Be Due to An Inability to Bind (auto)Antigen In Vivo. Blood, 2010, 116, 2441-2441.	0.6	0
545	Mir-155 Contributed to Chronic Lymphocytic Leukemia Survival by Modulation of BCR-Signalling. Blood, 2011, 118, 620-620.	0.6	Ο
546	Relative Prognostic Significance of ZAP-70 and IGHV1-69 Expression in Chronic Lymphocytic Leukemia,. Blood, 2011, 118, 3891-3891.	0.6	0
547	Low Expression of ROR1 on Chronic Lymphocytic Leukemia Is Associated with Other Atypical Findings. Blood, 2011, 118, 4588-4588.	0.6	0
548	ROR1 Expression Accelerates Leukemia Development in RORxTCL1 Transgenic Mice,. Blood, 2011, 118, 3905-3905.	0.6	0
549	Lenalidomide Inhibits Proliferation of Chronic Lymphocytic Leukemia Cells in Vitro. Blood, 2011, 118, 1775-1775.	0.6	Ο
550	Treatment of Chronic Lymphocytic Leukemia Patients with Lenalidomide Induces Down-Regulation of miR342-3p Associated with Over-Expression of Tumor Suppressor RASSF4,. Blood, 2011, 118, 3885-3885.	0.6	0
551	MicroRNA Profiling in Patients with CLL B Cells Expressing the Unmutated IGHV1-69 Gene. Blood, 2011, 118, 2846-2846.	0.6	Ο
552	Highly Specific Inhibitor for Syk Induces Chronic Lymphocytic Leukemia Cell Apoptosis,. Blood, 2011, 118, 3875-3875.	0.6	0
553	Heat Shock Protein 90 (Hsp90) Activity Status Is An Independent Prognostic Marker in Chronic Lymphocytic Leukemia (CLL) and Correlates with IgVH Mutational Status, ZAP-70 Expression and Time to First Treatment. Blood, 2011, 118, 2544-2544.	0.6	Ο
554	Improved Outcome in Unrelated Donor Recipients After Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Advanced Relapse / Refractory Chronic Lymphocytic Leukemia. Blood, 2011, 118, 4474-4474.	0.6	0
555	Increased Activity of Aldehyde Dehydrogenase, a Stem/Progenitor Cell Marker, in Chronic Lymphocytic Leukemia,. Blood, 2011, 118, 3867-3867.	0.6	Ο
556	Eradication of Minimal Residual Disease Using Alemtuzumab Consolidation After High-Dose Methyl-Prednisolone Plus Rituximab (HDMP-R) Is Safe, Effective and Induces Long Term Remission in Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2866-2866.	0.6	0
557	Race As a Determinant of Disease Biology and Outcomes in Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1785-1785.	0.6	0
558	A Monoclonal Antibody Specifically Targeting CD44 Inhibits B-Cell Chronic Lymphocytic Leukemia Cell Survival In Vitro and In Vivo. Blood, 2011, 118, 927-927.	0.6	0

#	Article	IF	CITATIONS
559	The Target Genes and Prognostic Significance of Mir-150 in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3859-3859.	0.6	0
560	Chemical Biology Strategy Reveals Cell Lineage- and Cell Differentiation-Specific Small Molecule Inhibitors of NF-IºB Blood, 2012, 120, 2421-2421.	0.6	0
561	Genomic Analysis of Serial Chronic Lymphocytic Leukemia Samples Suggests That Epigenetic Changes, Rather Than Clonal Evolution, May Drive the Progression of This Leukemia. Blood, 2012, 120, 4563-4563.	0.6	0
562	The Relative Significance of ZAP-70 Promoter Methylation As a Prognostic Factor in Previously Untreated Chronic Lymphocytic Leukemia: Validation of Results Using a Second Large CLL Research Consortium (CRC) Patient Data Set. Blood, 2012, 120, 3865-3865.	0.6	0
563	BMS-936564 (MDX1338): A Fully Human Anti-CXCR4 Antibody Induces Apoptosis in an in Vitro Model of Stromal – Leukemia Cell Interaction for Chronic Lymphocytic Leukemia Blood, 2012, 120, 2887-2887.	0.6	0
564	Variation in health-related quality of life (HRQOL) by line of therapy, age, and gender among patients with chronic lymphocytic leukemia Journal of Clinical Oncology, 2013, 31, 7086-7086.	0.8	0
565	Targeting Of Chronic Lymphocytic Leukemia B Cells With a Humanized Monoclonal Antibody Specific For ROR1. Blood, 2013, 122, 2873-2873.	0.6	Ο
566	A Cyclopropane-Derived Stable Analog Of Fd-895 Induces Apoptosis and Inhibition Of mRNA Splicing In Lymphoma and Chronic Lymphocytic Leukemia: A Novel Therapeutic Approach. Blood, 2013, 122, 2884-2884.	0.6	0
567	Allele-Specific Loss Of The Mir-15a/16-1 Cluster Correlates With ZAP70 Expression In CLL Patients With 13q Deletion. Blood, 2013, 122, 3753-3753.	0.6	0
568	Lenalidomide Inhibits Proliferation Of Chronic Lymphocytic Leukemia Cells Via a Cereblon/p21WAF1/Cip1-Dependent Mechanism. Blood, 2013, 122, 4139-4139.	0.6	0
569	Inhibition Of Wnt Signaling In Chronic Lymphocytic Leukemia Has Synergistic Cytotoxicity With Ibrutinib. Blood, 2013, 122, 5306-5306.	0.6	0
570	Heterogeneity and Evolution Of DNA Methylation In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 1626-1626.	0.6	0
571	Trisomy 12 CLL Cells Have High Surface Expression Of Integrins Involved In Lymphocyte Trafficking But This Does Not Translate Into Improved LFA-1-Mediated Motility. Blood, 2013, 122, 4159-4159.	0.6	0
572	Dynamics Changes in CCL3 and CCL4 Plasma Chemokine Levels in Patients with Chronic Lymhocytic Leukemia (CLL) Managed with Observation. Blood, 2014, 124, 5640-5640.	0.6	0
573	Patterns of Care of Aged Chronic Lymphocytic Leukemia Patients in the United States: Systematic Analysis of 457 Patients in the Connect CLL Registry. Blood, 2014, 124, 4672-4672.	0.6	0
574	Reasons for Initiation of First-Line Therapy and Early Outcomes for Patients (Pts) with Rai 0/1 Chronic Lymphocytic Leukemia (CLL): An Analysis of the Connect CLL® Cohort Study. Blood, 2015, 126, 3284-3284.	0.6	0
575	Treatment Selection and Practice Patterns for the Management of High-Risk Chronic Lymphocytic Leukemia (CLL) in the US: An Analysis of the Impact of Risk Stratification on Treatment Selection from the Connect CLL® Registry. Blood, 2015, 126, 4483-4483.	0.6	0
576	Analysis of Early Mortality of Chronic Lymphocytic Leukemia (CLL) Patients Treated in US Practices in the Connect CLL® Registry. Blood, 2015, 126, 5270-5270.	0.6	0

#	Article	IF	CITATIONS
577	Idelalisib Treatment Is Associated with Improved Cytopenias in Patients with Relapsed/Refractory iNHL and CLL. Blood, 2015, 126, 1747-1747.	0.6	Ο
578	Cirmtuzumab Blocks Production of Proinflammatory Factors By Inhibiting Wnt5a/ROR1 Induced Activation of NF-Kappa B in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 4415-4415.	0.6	0
579	ROR1 Expression Is Associated with Oncogenic Dedifferentiation in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 1853-1853.	0.6	0
580	A Phase Ib/II Study of Ibrutinib in Combination with Obinutuzumab-Gazyva As First-Line Treatment for Patients with Chronic Lymphocytic Leukemia > 65 Years Old or with Coexisting Conditions. Blood, 2018, 132, 1863-1863.	0.6	0
581	Activation of NF-Kappa B-p62-NRF2 Signaling Supports the Survival of CLL Cells That Express High Levels of ROR1. Blood, 2018, 132, 3122-3122.	0.6	0
582	B-Cell Receptor Signaling Drives Glycolysis in Chronic Lymphocytic Leukemia Cells. Blood, 2018, 132, 3121-3121.	0.6	0
583	Ibrutinib Reduces Obinutuzumab-Gazyva Infusion Related Reactions (IRR) in Patients with Chronic Lymphocytic Leukemia (CLL) and It Is Associated with Changes on Plasma Cytokine Levels. Blood, 2018, 132, 1864-1864.	0.6	0
584	Tecfidera Modulates Activation of Malignant B-Cells: Correlative Analysis from a Phase 1 Clinical Trial in Patients with Chronic Lymphocytic Leukemia. Blood, 2018, 132, 3143-3143.	0.6	0
585	Identification of Genotype-Specific Therapeutic Vulnerabilities By Comparative Dynamic BH3 Profiling Analysis of Human and Murine CLL. Blood, 2019, 134, 4281-4281.	0.6	0
586	High-Level ROR1 and BCL2, Cancer-Stemness, and BCL2 Mutations Associate with Venetoclax Resistance in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 476-476.	0.6	0
587	B Cell-Restricted Depletion of Dnmt3a Activates Notch Signaling and Causes Chronic Lymphocytic Leukemia. Blood, 2021, 138, 249-249.	0.6	Ο