
Marcello Righetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring the EnergyÂManifold of Quasiâ€Twoâ€Dimensional Perovskites for Efficient Carrier Extraction. Advanced Energy Materials, 2022, 12, .	19.5	15
2	Selfâ€Assembly of Oriented Antibodyâ€Decorated Metal–Organic Framework Nanocrystals for Activeâ€Targeting Applications. Advanced Materials, 2022, 34, e2106607.	21.0	23
3	Selfâ€Assembly of Oriented Antibodyâ€Decorated Metal–Organic Framework Nanocrystals for Activeâ€Targeting Applications (Adv. Mater. 21/2022). Advanced Materials, 2022, 34, .	21.0	0
4	Silverâ€Bismuth Based 2D Double Perovskites (4FPEA) ₄ AgBiX ₈ (<i>X</i> Â= Cl, Br,) Tj Advanced Optical Materials, 2022, 10, .	ETQq0 0 (7.3) rgBT /Overlc 17
5	The Physics of Interlayer Exciton Delocalization in Ruddlesden–Popper Lead Halide Perovskites. Nano Letters, 2021, 21, 405-413.	9.1	22
6	Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping. Light: Science and Applications, 2021, 10, 2.	16.6	66
7	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	11.3	34
8	Perspectives of Organic and Perovskiteâ€Based Spintronics. Advanced Optical Materials, 2021, 9, 2100215.	7.3	46
9	Large Cation Engineering in Two-Dimensional Silver–Bismuth Bromide Double Perovskites. Chemistry of Materials, 2021, 33, 4688-4700.	6.7	25
10	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	4.1	14
11	Perspectives of Organic and Perovskiteâ€Based Spintronics (Advanced Optical Materials 14/2021). Advanced Optical Materials, 2021, 9, 2170053.	7.3	1
12	The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective. Journal of Physical Chemistry C, 2020, 124, 22314-22320.	3.1	31
13	Hot carriers perspective on the nature of traps in perovskites. Nature Communications, 2020, 11, 2712.	12.8	65
14	Hot Carriers in Halide Perovskites: How Hot Truly?. Journal of Physical Chemistry Letters, 2020, 11, 2743-2750.	4.6	41
15	Quo vadis, perovskite emitters?. Journal of Chemical Physics, 2020, 152, 130901.	3.0	20
16	Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Progress in Materials Science, 2020, 110, 100639.	32.8	38
17	Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nature Communications, 2019, 10, 3456.	12.8	38
18	Surface Engineering of Chemically Exfoliated MoS ₂ in a "Click― How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. Chemistry of Materials, 2018, 30, 8257-8269.	6.7	29

MARCELLO RIGHETTO

#	Article	IF	CITATIONS
19	Engineering interactions in QDs–PCBM blends: a surface chemistry approach. Nanoscale, 2018, 10, 11913-11922.	5.6	13
20	Deciphering hot- and multi-exciton dynamics in core–shell QDs by 2D electronic spectroscopies. Physical Chemistry Chemical Physics, 2018, 20, 18176-18183.	2.8	26
21	Spectroscopic Insights into Carbon Dot Systems. Journal of Physical Chemistry Letters, 2017, 8, 2236-2242.	4.6	111
22	Bridging Energetics and Dynamics of Exciton Trapping in Core–Shell Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 896-902.	3.1	24
23	Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties. Journal of Physical Chemistry Letters, 2017, 8, 5981-5986.	4.6	18
24	The central role of ligands in electron transfer from perovskite nanocrystals. MRS Advances, 2017, 2, 2327-2335.	0.9	5
25	Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots. , 2017, , .		1
26	Optical excitations dynamics at hetero-interfaces fullerene/quantum dots. , 2017, , .		0
27	Exciton and multi-exciton dynamics in CdSe/Cd _{1-x} Zn _x S quantum dots. Proceedings of SPIE, 2016, , .	0.8	1
28	Boosting carbon quantum dots/fullerene electron transfer via surface group engineering. Physical Chemistry Chemical Physics, 2016, 18, 31286-31295.	2.8	31
29	Fast One-Pot Synthesis of MoS ₂ /Crumpled Graphene p–n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2015, 7, 25685-25692.	8.0	63
30	Exciton Delocalization Across the Organic Spacer: Origin of Ultrafast Energy Funnelling in Ruddlesden-Popper Perovskites. , 0, , .		0
31	Hot Carrier Temperatures in Halide Perovskites: A Closer Look. , 0, , .		0