
Filipe Vaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242454/publications.pdf Version: 2024-02-01

FILIDE VAZ

#	Article	IF	CITATIONS
1	Unraveling the role of magnetic anisotropy on the thermoelectric response: a theoretical and experimental approach. Journal Physics D: Applied Physics, 2022, 55, 025001.	2.8	3
2	Plasmonic Strain Sensors Based on Au-TiO2 Thin Films on Flexible Substrates. Sensors, 2022, 22, 1375.	3.8	3
3	Flexible TiCu _{<i>x</i>} Thin Films with Dual Antimicrobial and Piezoresistive Characteristics. ACS Applied Bio Materials, 2022, 5, 1267-1272.	4.6	3
4	Assessing the relaxation mechanisms contributions on magnetoimpedance effect in YIG/W bilayers. Journal Physics D: Applied Physics, 2022, 55, 215003.	2.8	0
5	Immobilization of Streptavidin on a Plasmonic Au-TiO2 Thin Film towards an LSPR Biosensing Platform. Nanomaterials, 2022, 12, 1526.	4.1	6
6	Molybdenum Oxide Thin Films Grown on Flexible ITO-Coated PET Substrates. Materials, 2021, 14, 821.	2.9	12
7	Carbon Monoxide (CO) Sensor Based on Au Nanoparticles Embedded in a CuO Matrix by HR-LSPR Spectroscopy at Room Temperature. , 2021, 5, 1-3.		9
8	Bioactive and biopassive treatment of poly(ethylene terephthalate) multifilament textile yarns to improve/prevent fibroblast viability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2213-2226.	3.4	5
9	Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Applied Sciences (Switzerland), 2021, 11, 5388.	2.5	29
10	Co2FeAl Heusler alloy onto amorphous TiO2 layer: Exploring the quasi-static and dynamic magnetic properties. Journal of Physics and Chemistry of Solids, 2021, 154, 110088.	4.0	3
11	Improving the Room-Temperature Ferromagnetism in ZnO and Low-Doped ZnO:Ag Films Using GLAD Sputtering. Materials, 2021, 14, 5337.	2.9	1
12	Nanostructured Cr(N,O) based thin films for relative humidity sensing. Vacuum, 2021, 191, 110333.	3.5	2
13	Directional Field-Dependence of Magnetoimpedance Effect on Integrated YIG/Pt-Stripline System. Sensors, 2021, 21, 6145.	3.8	6
14	Structural, Mechanical, and Decorative Properties of Sputtered TiN and Ti (N, C) Films for Orthodontic Applications; an In Vitro Study. Materials, 2021, 14, 5175.	2.9	6
15	Multifunctional hard coatings based on CrNx for temperature sensing applications. Sensors and Actuators A: Physical, 2021, 329, 112794.	4.1	4
16	In-situ annealing transmission electron microscopy of plasmonic thin films composed of bimetallic Au–Ag nanoparticles dispersed in a TiO2 matrix. Vacuum, 2021, 193, 110511.	3.5	8
17	Me-Doped Ti–Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study. Sensors, 2021, 21, 8143.	3.8	5
18	Thin films of Au-Al2O3 for plasmonic sensing. Applied Surface Science, 2020, 500, 144035.	6.1	13

#	Article	IF	CITATIONS
19	Evolution of the mechanical properties of Ti-based intermetallic thin films doped with different metals to be used as biomedical devices. Applied Surface Science, 2020, 505, 144617.	6.1	22
20	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020, 12, 60-69.	8.0	16
21	Magnetic Response Dependence of ZnO Based Thin Films on Ag Doping and Processing Architecture. Materials, 2020, 13, 2907.	2.9	3
22	Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films. Materials, 2020, 13, 2135.	2.9	26
23	NANOPTICS: In-depth analysis of NANomaterials for OPTICal localized surface plasmon resonance Sensing. SoftwareX, 2020, 12, 100522.	2.6	13
24	Preparation of Plasmonic Au-TiO2 Thin Films on a Transparent Polymer Substrate. Coatings, 2020, 10, 227.	2.6	3
25	High-frequency magnetoimpedance effect in meander-line trilayered films. Journal of Magnetism and Magnetic Materials, 2020, 515, 167166.	2.3	4
26	Optimization of Au:CuO Nanocomposite Thin Films for Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2020, 92, 4349-4356.	6.5	22
27	Modulation of the magnetoimpedance effect of ZnO:Ag/NiFe heterostructures by thermal annealing. Journal of Materials Science, 2020, 55, 5961-5968.	3.7	5
28	Au-WO3 Nanocomposite Coatings for Localized Surface Plasmon Resonance Sensing. Materials, 2020, 13, 246.	2.9	12
29	Nanocomposite Au-ZnO thin films: Influence of gold concentration and thermal annealing on the microstructure and plasmonic response. Surface and Coatings Technology, 2020, 385, 125379.	4.8	8
30	Surface functionalization of polypropylene (PP) by chitosan immobilization to enhance human fibroblasts viability. Polymer Testing, 2020, 86, 106507.	4.8	10
31	Fabrication, Characterization and Implementation of Thermo Resistive TiCu(N,O) Thin Films in a Polymer Injection Mold. Materials, 2020, 13, 1423.	2.9	6
32	Enhancing the Sensitivity of Nanoplasmonic Thin Films for Ethanol Vapor Detection. Materials, 2020, 13, 870.	2.9	6
33	Antifungal activity of ZnO thin films prepared by glancing angle deposition. Thin Solid Films, 2019, 687, 137461.	1.8	14
34	High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. Thin Solid Films, 2019, 691, 137587.	1.8	10
35	Development of biocompatible plasmonic thin films composed of noble metal nanoparticles embedded in a dielectric matrix to enhance Raman signals. Applied Surface Science, 2019, 496, 143701.	6.1	8
36	Gas Sensing with Nanoplasmonic Thin Films Composed of Nanoparticles (Au, Ag) Dispersed in a CuO Matrix. Coatings, 2019, 9, 337.	2.6	15

#	Article	IF	CITATIONS
37	Development and characterization of ZnO piezoelectric thin films on polymeric substrates for tissue repair. Journal of Biomedical Materials Research - Part A, 2019, 107, 2150-2159.	4.0	20
38	Thin films composed of metal nanoparticles (Au, Ag, Cu) dispersed in AlN: The influence of composition and thermal annealing on the structure and plasmonic response. Thin Solid Films, 2019, 676, 12-25.	1.8	20
39	Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Materials Science and Engineering C, 2019, 100, 424-432.	7.3	27
40	Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensing. Applied Surface Science, 2019, 484, 152-168.	6.1	29
41	Nanostructured Ti1-xCux thin films with tailored electrical and morphological anisotropy. Thin Solid Films, 2019, 672, 47-54.	1.8	10
42	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer, 2019, 169, 138-147.	3.8	51
43	Nanoplasmonic response of porous Au-TiO ₂ thin films prepared by oblique angle deposition. Nanotechnology, 2019, 30, 225701.	2.6	33
44	BraMat 2019 Special Issue: Editorial Preface. Materials Today: Proceedings, 2019, 19, 909.	1.8	0
45	Surface Plasmon Resonance in a Metallic Nanoparticle Embedded in a Semiconductor Matrix: Exciton–Plasmon Coupling. ACS Photonics, 2019, 6, 204-210.	6.6	16
46	Fracture resistance of Ti-Ag thin films deposited on polymeric substrates for biosignal acquisition applications. Surface and Coatings Technology, 2019, 358, 646-653.	4.8	10
47	Effect of microstructural changes in the biological behavior of magnetron sputtered ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	6
48	Tuning electrical resistivity anisotropy of ZnO thin films for resistive sensor applications. Thin Solid Films, 2018, 654, 93-99.	1.8	12
49	Thin films of Ag–Au nanoparticles dispersed in TiO ₂ : influence of composition and microstructure on the LSPR and SERS responses. Journal Physics D: Applied Physics, 2018, 51, 205102.	2.8	30
50	Contact Pressure and Flexibility of Multipin Dry EEG Electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 750-757.	4.9	54
51	Optimization of nanocomposite Au/TiO 2 thin films towards LSPR optical-sensing. Applied Surface Science, 2018, 438, 74-83.	6.1	54
52	Development of Au/CuO nanoplasmonic thin films for sensing applications. Surface and Coatings Technology, 2018, 343, 178-185.	4.8	28
53	Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO ₂ Dielectric Matrix. ACS Applied Materials & Interfaces, 2018, 10, 42882-42890.	8.0	20
54	Multifunctional Flax Fibres Based on the Combined Effect of Silver and Zinc Oxide (Ag/ZnO) Nanostructures. Nanomaterials, 2018, 8, 1069.	4.1	67

#	Article	IF	CITATIONS
55	Thin films composed of Au nanoparticles embedded in AlN: Influence of metal concentration and thermal annealing on the LSPR band. Vacuum, 2018, 157, 414-421.	3.5	24
56	Properties of CrN thin films deposited in plasma-activated ABS by reactive magnetron sputtering. Surface and Coatings Technology, 2018, 349, 858-866.	4.8	11
57	Antibacterial effect and biocompatibility of a novel nanostructured ZnO-coated gutta-percha cone for improved endodontic treatment. Materials Science and Engineering C, 2018, 92, 840-848.	7.3	26
58	Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing. Nanotechnology, 2018, 29, 355706.	2.6	22
59	Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sensors Journal, 2017, 17, 2182-2190.	4.7	23
60	Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films. Applied Surface Science, 2017, 420, 681-690.	6.1	25
61	Relationship between nano-architectured Ti1â^'x Cu x thin film and electrical resistivity for resistance temperature detectors. Journal of Materials Science, 2017, 52, 4878-4885.	3.7	16
62	Corrosion Behavior of Titanium Oxynitrided by Diffusion and Magnetron Sputtering Methods in Physiological Solution. Materials Performance and Characterization, 2017, 6, 594-606.	0.3	0
63	Ag fractals formed on top of a porous TiO ₂ thin film. Physica Status Solidi - Rapid Research Letters, 2016, 10, 530-534.	2.4	13
64	Ag:TiNâ€Coated Polyurethane for Dry Biopotential Electrodes: From Polymer Plasma Interface Activation to the First EEG Measurements. Plasma Processes and Polymers, 2016, 13, 341-354.	3.0	27
65	Broadband Optical Absorption Caused by the Plasmonic Response of Coalesced Au Nanoparticles Embedded in a TiO ₂ Matrix. Journal of Physical Chemistry C, 2016, 120, 16931-16945.	3.1	31
66	Piezoresistive response of nano-architectured Ti x Cu y thin films for sensor applications. Sensors and Actuators A: Physical, 2016, 247, 105-114.	4.1	17
67	Back Cover: Ag fractals formed on top of a porous TiO ₂ thin film (Phys. Status Solidi RRL) Tj ETQq1	1 0.7843 2.4	14 rgBT /Ove
68	Graphene and polarisable nanoparticles: Looking good together?. , 2016, , .		0
69	Modular multipin electrodes for comfortable dry EEG. , 2016, 2016, 5705-5708.		8
70	Optical and microstructural properties of Au alloyed Al–O sputter deposited coatings. Thin Solid Films, 2016, 598, 65-71.	1.8	7
71	Functional behaviour of TiO ₂ films doped with noble metals. Surface Engineering, 2016, 32, 554-561.	2.2	14
72	Electrochemical characterization of nanostructured Ag:TiN thin films produced by glancing angle deposition on polyurethane substrates for bio-electrode applications. Journal of Electroanalytical Chemistry, 2016, 768, 110-120.	3.8	12

#	Article	IF	CITATIONS
73	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	6.1	44
74	Tribological characterization of TiO 2 /Au decorative thin films obtained by PVD magnetron sputtering technology. Wear, 2015, 330-331, 419-428.	3.1	13
75	Novel Multipin Electrode Cap System for Dry Electroencephalography. Brain Topography, 2015, 28, 647-656.	1.8	91
76	Thin films composed of gold nanoparticles dispersed in a dielectric matrix: The influence of the host matrix on the optical and mechanical responses. Thin Solid Films, 2015, 596, 8-17.	1.8	28
77	Multifunctional Ti–Me (Me=Al, Cu) thin film systems for biomedical sensing devices. Vacuum, 2015, 122, 353-359.	3.5	20
78	Electrochemical and structural characterization of nanocomposite Agy:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content. Electrochimica Acta, 2015, 153, 602-611.	5.2	9
79	Development of polymer wicks for the fabrication of bio-medical sensors. Materials Science and Engineering C, 2015, 49, 356-363.	7.3	19
80	Study of the electrical behavior of nanostructured Ti–Ag thin films, prepared by Glancing Angle Deposition. Materials Letters, 2015, 157, 188-192.	2.6	13
81	Biological behaviour of thin films consisting of Au nanoparticles dispersed in a TiO2 dielectric matrix. Vacuum, 2015, 122, 360-368.	3.5	20
82	Microstructural evolution of Au/TiO2 nanocomposite films: The influence of Au concentration and thermal annealing. Thin Solid Films, 2015, 580, 77-88.	1.8	43
83	Ag y :TiN x thin films for dry biopotential electrodes: the effect of composition and structural changes on the electrical and mechanical behaviours. Applied Physics A: Materials Science and Processing, 2015, 119, 169-178.	2.3	2
84	Effect of surface plasmon resonance in TiO ₂ /Au thin films on the fluorescence of self-assembled CdTe QDs structure. Journal of Physics: Conference Series, 2015, 605, 012025.	0.4	3
85	Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses. Applied Surface Science, 2015, 358, 595-604.	6.1	28
86	The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films. Materials Chemistry and Physics, 2015, 163, 569-580.	4.0	7
87	Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Applied Surface Science, 2015, 358, 660-669.	6.1	19
88	Multichannel EEG with novel Ti/TiN dry electrodes. Sensors and Actuators A: Physical, 2015, 221, 139-147.	4.1	50
89	Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealing. Surface and Coatings Technology, 2015, 261, 262-271.	4.8	19
90	Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	27

#	Article	IF	CITATIONS
91	Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 041511.	2.1	8
92	Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles. Journal of Nanophotonics, 2014, 9, 093796.	1.0	9
93	Optical response of fractal aggregates of polarizable particles. , 2014, , .		0
94	Structural, chemical, optical and mechanical properties of Au doped AlN sputtered coatings. Surface and Coatings Technology, 2014, 255, 130-139.	4.8	9
95	Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021307.	2.1	7
96	Electrochemical behaviour of nanocomposite Agx:TiN thin films for dry biopotential electrodes. Electrochimica Acta, 2014, 125, 48-57.	5.2	30
97	Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behavior. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	6
98	Growth and size distribution of Au nanoparticles in annealed Au/TiO2 thin films. Thin Solid Films, 2014, 553, 138-143.	1.8	12
99	Electrical characterization of Ag:TiN thin films produced by glancing angle deposition. Materials Letters, 2014, 115, 136-139.	2.6	23
100	Nanostructured functional Ti–Ag electrodes for large deformation sensor applications. Sensors and Actuators A: Physical, 2014, 220, 204-212.	4.1	20
101	Protective Ag:TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings. Journal of Materials Science: Materials in Medicine, 2014, 25, 2069-2081.	3.6	14
102	Influence of the composition of titanium oxynitride layers on the fretting behavior of functionalized titanium substrates: PVD films versus surface laser treatments. Surface and Coatings Technology, 2014, 255, 146-152.	4.8	15
103	Comparison of three types of dry electrodes for electroencephalography. Acta IMEKO (2012), 2014, 3, 33.	0.7	25
104	Tribocorrosion behavior of Ti–C–O–N nanostructured thin films (black) for decorative applications. Tribology International, 2013, 68, 1-10.	5.9	6
105	TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the films. Applied Surface Science, 2013, 285, 10-18.	6.1	34
106	Nanocomposite Ag:TiN thin films for dry biopotential electrodes. Applied Surface Science, 2013, 285, 40-48.	6.1	38
107	Influence of stoichiometry and structure on the optical properties of AlN _x O _y films. Journal Physics D: Applied Physics, 2013, 46, 015305.	2.8	24
108	Modulated IR Radiometry Applied to Study \$\$ext{ TiO}_{2}\$\$ Coatings with Gold Nanocluster Inclusions. International Journal of Thermophysics, 2013, 34, 1597-1605.	2.1	3

Filipe Vaz

#	Article	IF	CITATIONS
109	Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon, 2013, 61, 568-576.	10.3	53
110	Properties of tantalum oxynitride thin films produced by magnetron sputtering: The influence of processing parameters. Vacuum, 2013, 98, 63-69.	3.5	33
111	Development of a quasi-dry electrode for EEG recording. Sensors and Actuators A: Physical, 2013, 199, 310-317.	4.1	82
112	Development of tantalum oxynitride thin films produced by PVD: Study of structural stability. Applied Surface Science, 2013, 285, 19-26.	6.1	13
113	Influence of composition, bonding characteristics and microstructure on the electrochemical and optical stability of AlOxNy thin films. Electrochimica Acta, 2013, 106, 23-34.	5.2	11
114	Novel cap system with active actuators for rapid dry electroencephalography. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	0
115	Structural and Morphological Changes in Ag:TiN Nanocomposite Films Promoted by In-Vacuum Annealing. Journal of Nano Research, 2013, 25, 67-76.	0.8	10
116	Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings. , 2013, 2013, 547-50.		5
117	TiO ₂ coatings with Au nanoparticles analysed by photothermal IR radiometry. Journal Physics D: Applied Physics, 2012, 45, 105301.	2.8	17
118	Piezoresistive response of Pluronic-wrapped single-wall carbon nanotube–epoxy composites. Journal of Intelligent Material Systems and Structures, 2012, 23, 909-917.	2.5	8
119	Electrical properties of AlNxOy thin films prepared by reactive magnetron sputtering. Thin Solid Films, 2012, 520, 6709-6717.	1.8	24
120	The influence of annealing treatments on the properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering. Applied Surface Science, 2012, 258, 4028-4034.	6.1	49
121	TiNx coated polycarbonate for bio-electrode applications. Corrosion Science, 2012, 56, 49-57.	6.6	37
122	Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites. Smart Materials and Structures, 2012, 21, 075008.	3.5	43
123	Signal Quality of Titanium and Titanium Nitride Coated Dry Polymer Electrodes. Biomedizinische Technik, 2012, 57, .	0.8	0
124	Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors and Actuators A: Physical, 2012, 178, 10-16.	4.1	124
125	Structural and optical studies of Au doped titanium oxide films. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 61-65.	1.4	16
126	Analysis of multifunctional titanium oxycarbide films as a function of oxygen addition. Surface and Coatings Technology, 2012, 206, 2525-2534.	4.8	27

#	Article	IF	CITATIONS
127	Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing. Journal of Applied Physics, 2011, 109, .	2.5	74
128	Nanocomposite Thin Films Resulting from Au Nanoclusters Dispersed in Titanium Oxide Dielectric Matrixes: the Surface Plasmon Resonance Effect. , 2011, , .		3
129	Optical properties of AlN x O y thin films deposited by DC magnetron sputtering. , 2011, , .		3
130	Sputter deposition of thin films on different substrate materials analyzed by means of modulated IR radiometry. Surface and Coatings Technology, 2011, 205, S204-S208.	4.8	1
131	Structure and chemical bonds in reactively sputtered black Ti–C–N–O thin films. Thin Solid Films, 2011, 520, 144-151.	1.8	20
132	Plasma Surface Activation and TiN Coating of a TPV Substrate for Biomedical Applications. Plasma Processes and Polymers, 2011, 8, 1174-1183.	3.0	7
133	Preparation and characterization of CrNxOy thin films: The effect of composition and structural features on the electrical behavior. Applied Surface Science, 2011, 257, 9120-9124.	6.1	19
134	Friction and wear behaviours of Ti(C,O,N) dark decorative coatings. Tribology International, 2011, 44, 820-828.	5.9	6
135	Thermal stability, mechanical and corrosion behaviour of niobium-based coatings in the ternary system Nb–O–N. Thin Solid Films, 2011, 519, 2457-2463.	1.8	12
136	Novel flexible dry PU/TiN-multipin electrodes: First application in EEG measurements. , 2011, 2011, 55-8.		9
137	Novel TiN <i>_x</i> -based biosignal electrodes for electroencephalography. Measurement Science and Technology, 2011, 22, 124007.	2.6	15
138	Novel Ti/TiN Dry Electrodes and Ag/AgCl: A Direct Comparison in Multichannel EEG. IFMBE Proceedings, 2011, , 1011-1014.	0.3	0
139	Modulated IR radiometry as a tool for the thickness control of coatings. Journal of Physics: Conference Series, 2010, 214, 012081.	0.4	3
140	Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films. International Journal of Materials and Product Technology, 2010, 39, 186.	0.2	6
141	Development of new decorative coatings based on gold nanoparticles dispersed in an amorphous TiO2 dielectric matrix. Surface and Coatings Technology, 2010, 204, 1569-1575.	4.8	44
142	Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. Journal of Materials Science: Materials in Medicine, 2010, 21, 21-32.	3.6	48
143	Nanoscale color control of TiO2 films with embedded Au nanoparticles. Materials Letters, 2010, 64, 2624-2626.	2.6	45
144	Influence of composition and structural properties in the tribological behaviour of magnetron sputtered Ti–Si–C nanostructured thin films, prepared at low temperature. Wear, 2010, 268, 552-557.	3.1	24

#	Article	IF	CITATIONS
145	Functional and optical properties of Au:TiO2 nanocomposite films: The influence of thermal annealing. Applied Surface Science, 2010, 256, 6536-6542.	6.1	43
146	AlNxOy thin films deposited by DC reactive magnetron sputtering. Applied Surface Science, 2010, 257, 1478-1483.	6.1	34
147	Tribocorrosion behaviour of TiC O thin films in bio-fluids. Electrochimica Acta, 2010, 56, 929-937.	5.2	55
148	Plasma Surface Modification of Polycarbonate and Poly(propylene) Substrates for Biomedical Electrodes. Plasma Processes and Polymers, 2010, 7, 676-686.	3.0	17
149	Ti–Si–C Thin Films Produced by Magnetron Sputtering: Correlation Between Physical Properties, Mechanical Properties and Tribological Behavior. Journal of Nanoscience and Nanotechnology, 2010, 10, 2926-2932.	0.9	8
150	Structure and Chemical Bonds in Black Ti(C, N, O) Thin Films. , 2010, , .		0
151	Analysis of multifunctional oxycarbide and oxynitride thin films by modulated IR radiometry. Journal Physics D: Applied Physics, 2010, 43, 395301.	2.8	10
152	First principles study of point defects in titanium oxycarbide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 194-197.	3.5	18
153	Thickness Control of Coatings by Means of Modulated IR Radiometry. Plasma Processes and Polymers, 2009, 6, S592-S598.	3.0	8
154	The Role of Modulated IR Radiometry Measurements in the Characterization of ZrON Thin Films. Plasma Processes and Polymers, 2009, 6, S760.	3.0	5
155	Study on the Thermal Stability of Ti(C,O,N) Decorative Coatings. Plasma Processes and Polymers, 2009, 6, S755.	3.0	7
156	The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materials. Electrochimica Acta, 2009, 55, 59-67.	5.2	40
157	Structural evolution of Ti–Al–Si–N nanocomposite coatings. Vacuum, 2009, 83, 1206-1212.	3.5	36
158	ab-initio Study of the properties of Ti1â^'xâ^'ySixAlyN solid solution. Vacuum, 2009, 83, 1240-1243.	3.5	21
159	Optical properties of titanium oxycarbide thin films. Applied Surface Science, 2009, 255, 5615-5619.	6.1	9
160	ZrO _{<i>x</i>} N _{<i>y</i>} decorative thin films prepared by the reactive gas pulsing process. Journal Physics D: Applied Physics, 2009, 42, 195501.	2.8	24
161	XRD and FTIR analysis of Ti–Si–C–ON coatings for biomedical applications. Surface and Coatings Technology, 2008, 203, 490-494.	4.8	31
162	Structural and Mechanical properties of Ti–Si–C–ON for biomedical applications. Surface and Coatings Technology, 2008, 202, 2403-2407.	4.8	8

#	Article	IF	CITATIONS
163	Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing. Surface and Coatings Technology, 2008, 202, 2363-2367.	4.8	16
164	Development of dark Ti(C,O,N) coatings prepared by reactive sputtering. Surface and Coatings Technology, 2008, 203, 804-807.	4.8	24
165	Photothermal characterization of thin films and coatings. Vacuum, 2008, 82, 1461-1465.	3.5	12
166	Effect of thermal treatments on the structure of MoNxOy thin films. Vacuum, 2008, 82, 1428-1432.	3.5	18
167	Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films. Vacuum, 2008, 82, 1470-1474.	3.5	13
168	Modulated IR radiometry of (TiSi)N thin films. Vacuum, 2008, 82, 1457-1460.	3.5	17
169	TiCxOy thin films for decorative applications: Tribocorrosion mechanisms and synergism. Tribology International, 2008, 41, 603-615.	5.9	85
170	Structural study of the oxidation process and stability of NbOxNy coatings. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 4927-4932.	1.4	1
171	Thermal characterization of TiCxOy thin films. European Physical Journal: Special Topics, 2008, 153, 303-306.	2.6	1
172	Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films. Journal of Applied Physics, 2008, 103, .	2.5	66
173	The contribution of grain boundary barriers to the electrical conductivity of titanium oxide thin films. Applied Physics Letters, 2008, 93, 064102.	3.3	19
174	Influence of the O/C ratio in the behaviour of TiCxOy thin films. Surface and Coatings Technology, 2007, 201, 5587-5591.	4.8	28
175	Magnetron sputtered Ti–Si–C thin films prepared at low temperatures. Surface and Coatings Technology, 2007, 201, 7180-7186.	4.8	43
176	Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Part I: Pattern and period of pulses. Surface and Coatings Technology, 2007, 201, 7720-7726.	4.8	42
177	Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Surface and Coatings Technology, 2007, 201, 7727-7732.	4.8	21
178	Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process: Part III: The particular case of exponential pulses. Surface and Coatings Technology, 2007, 201, 7733-7738.	4.8	21
179	The effect of bombarding conditions on the properties of multifunctional Ti–C–O thin films grown by magnetron sputtering. Surface and Coatings Technology, 2007, 202, 946-951.	4.8	17
180	Correlation Between Processing and Properties of Titanium Oxycarbide, TiCxOy, Thin Films. Plasma Processes and Polymers, 2007, 4, S83-S88.	3.0	10

#	Article	IF	CITATIONS
181	Thermal Characterization of Hard Decorative Thin Films. Plasma Processes and Polymers, 2007, 4, S190-S194.	3.0	6
182	Influence of Oxygen Addition on the Structural and Elastic Properties of TiC Thin Films. Plasma Processes and Polymers, 2007, 4, S195-S199.	3.0	16
183	Potential of Modulated IR Radiometry for the On-Line Control of Coatings. Plasma Processes and Polymers, 2007, 4, S857-S864.	3.0	3
184	The influence of structure changes in the properties of TiCxOy decorative thin films. Thin Solid Films, 2007, 515, 5424-5429.	1.8	21
185	Compositional and structural changes in ZrOxNy films depending on growth condition. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 458-461.	1.4	8
186	Structural evolution in ZrNxOy thin films as a function of temperature. Surface and Coatings Technology, 2006, 200, 2917-2922.	4.8	46
187	Mechanical evaluation of unbiased W–O–N coatings deposited by d.c. reactive magnetron sputtering. Surface and Coatings Technology, 2006, 200, 6511-6516.	4.8	49
188	Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy. Surface and Coatings Technology, 2006, 200, 6218-6224.	4.8	68
189	Tribocorrosion behaviour of ZrOxNy thin films for decorative applications. Surface and Coatings Technology, 2006, 200, 6634-6639.	4.8	32
190	Properties of MoNxOy thin films as a function of the N/O ratio. Thin Solid Films, 2006, 494, 201-206.	1.8	22
191	Property change in multifunctional TiCxOy thin films: Effect of the O/Ti ratio. Thin Solid Films, 2006, 515, 866-871.	1.8	45
192	The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnology Journal, 2006, 1, 842-849.	3.5	22
193	Raman spectra and structural analysis in ZrOxNy thin films. Thin Solid Films, 2006, 515, 1132-1137.	1.8	38
194	Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. Surface and Coatings Technology, 2005, 191, 317-323.	4.8	146
195	Structural stability of decorative ZrNxOy thin films. Surface and Coatings Technology, 2005, 200, 748-752.	4.8	27
196	Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine, 2005, 16, 81-92.	3.6	44
197	Tribological Researches on Rolling - Friction Coefficient, for Carburized and Carbonitrided Steel Surfaces. Journal of the Mechanical Behavior of Materials, 2005, 16, 407-418.	1.8	0
198	Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. Journal of Applied Physics, 2005, 98, 023715.	2.5	87

#	Article	IF	CITATIONS
199	Structural, optical and mechanical properties of coloured TiNxOy thin films. Thin Solid Films, 2004, 447-448, 449-454.	1.8	169
200	Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage. Thin Solid Films, 2004, 469-470, 11-17.	1.8	65
201	Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering. Thin Solid Films, 2004, 469-470, 274-281.	1.8	52
202	Microstructure of (Ti,Si,Al)N nanocomposite coatings. Surface and Coatings Technology, 2004, 177-178, 369-375.	4.8	52
203	Structural and corrosion behaviour of stoichiometric and substoichiometric TiN thin films. Surface and Coatings Technology, 2004, 180-181, 158-163.	4.8	38
204	lon beam studies of TiNxOy thin films deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2004, 180-181, 372-376.	4.8	36
205	Characterization of hard DC-sputtered Si-based TiN coatings: the effect of composition and ion bombardment. Surface and Coatings Technology, 2004, 188-189, 351-357.	4.8	36
206	Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications. Corrosion Science, 2004, 46, 3005-3018.	6.6	22
207	Effects of the morphology and structure on the elastic behavior of (Ti,Si,Al)N nanocomposites. Surface and Coatings Technology, 2003, 174-175, 984-991.	4.8	21
208	Preparation of magnetron sputtered TiNxOy thin films. Surface and Coatings Technology, 2003, 174-175, 197-203.	4.8	74
209	Mechanical characterization of reactively magnetron-sputtered TiN films. Surface and Coatings Technology, 2003, 174-175, 375-382.	4.8	44
210	Structural Development in Hard Si-Based TiN Coatings as a Function of Temperature: A Comprehensive Study in Vacuum and in Air. Materials Science Forum, 2002, 383, 151-160.	0.3	2
211	Physical and morphological characterization of reactively magnetron sputtered TiN films. Thin Solid Films, 2002, 420-421, 421-428.	1.8	21
212	Residual stress states in sputtered Ti1âÂ^Â'xSixNy films. Thin Solid Films, 2002, 402, 195-202.	1.8	66
213	Young's modulus of (Ti,Si)N films by surface acoustic waves and indentation techniques. Thin Solid Films, 2002, 408, 160-168.	1.8	35
214	Elastic properties of (Ti,Al,Si)N nanocomposite films. Surface and Coatings Technology, 2001, 142-144, 110-116.	4.8	45
215	Structural transitions in hard Si-based TiN coatings: the effect of bias voltage and temperature. Surface and Coatings Technology, 2001, 146-147, 274-279.	4.8	86
216	Superhard Nanocomposite Ti-Si-N Coatings. Materials Science Forum, 2001, 383, 143-150.	0.3	12

#	Article	IF	CITATIONS
217	Characterisation of Ti1â^'xSixNy nanocomposite films. Surface and Coatings Technology, 2000, 133-134, 307-313.	4.8	190
218	Chacterization of titanium silicon nitride films deposited by PVD. Vacuum, 1999, 52, 209-214.	3.5	23
219	The effect of the addition of Al and Si on the physical and mechanical properties of titanium nitride. Journal of Materials Processing Technology, 1999, 92-93, 169-176.	6.3	31
220	Structural analysis of Ti1â^'xSixNy nanocomposite films prepared by reactive magnetron sputtering. Surface and Coatings Technology, 1999, 120-121, 166-172.	4.8	100
221	Photothermal characterization of sputtered thin films and substrate treatment. , 1999, , .		5
222	Oxidation resistance of (Ti, Al, Si)N coatings in air. Surface and Coatings Technology, 1998, 98, 912-917.	4.8	76
223	Physical and mechanical properties of Ti1 â^' xSixN films. Surface and Coatings Technology, 1998, 100-101, 110-115.	4.8	22
224	Physical, structural and mechanical characterization of Ti1â^'xSixNy films. Surface and Coatings Technology, 1998, 108-109, 236-240.	4.8	81
225	Thermal oxidation of Ti1 â^' xAlxN coatings in air. Journal of the European Ceramic Society, 1997, 17, 1971-1977.	5.7	123
226	Thermal Oxidation of Ternary and Quaternary Nitrides of Titanium, Aluminium and Silicon. , 1997, , 501-510.		3
227	Oxidation resistance of (Ti,Al,Zr,Si)N coatings in air. Surface and Coatings Technology, 1995, 76-77, 70-74.	4.8	60
228	Biosystem with 16 highly-selective optical-channels for biological fluids analysis in the visible spectrum. , 0, , .		0
229	Surface Plasmon Resonance Effect on the Optical Properties of TiO ₂ Doped by Noble Metals Nanoparticles. Journal of Nano Research, 0, 18-19, 177-185.	0.8	8
230	Structure and Properties of Silver Clusters Implanted in PET by PVD Sputtering for Active Packaging Applications. Journal of Nano Research, 0, 18-19, 105-116.	0.8	7