Arun Kumar Thittai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423897/publications.pdf

Version: 2024-02-01

840776 940533 38 292 11 16 citations h-index g-index papers 38 38 38 148 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Weighted non-linear beamformers for low cost 2-element receive ultrasound imaging system. Ultrasonics, 2021, 110, 106293.	3.9	14
2	Extending Imaging Depth in PLD-Based Photoacoustic Imaging: Moving Beyond Averaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 549-557.	3.0	1
3	Towards practical implementation of the compressed sensing framework for multi-element synthetic transmit aperture imaging. Ultrasonics, 2021, 112, 106354.	3.9	4
4	A Poly-vinyl Alcohol (PVA)-based phantom and training tool for use in simulated Transrectal Ultrasound (TRUS) guided prostate needle biopsy procedures. Medical Engineering and Physics, 2021, 96, 46-52.	1.7	4
5	Novel POES Method for Raw RF Signal Recovery in Sparse Synthetic Aperture Ultrasound Acquisition: Preliminary Performance Analysis., 2021,,.		0
6	Compressed Sensing framework for Limited-element Compounded Diverging Waves: Initial Results. , 2021, , .		0
7	Pseudo-CT image synthesis from Ultrasound images for potential use in Brachytherapy treatment planning - initial results. , 2021, , .		0
8	Compressed Sensing Approach for Reducing the Number of Receive Elements in Synthetic Transmit Aperture Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2012-2021.	3.0	6
9	Axial super-resolution in ultrasound imaging with application to non-destructive evaluation. Ultrasonics, 2020, 108, 106183.	3.9	10
10	ï‰- <i>k</i> Algorithm for Sparse-Transmit Sparse-Receive Diverging Beam Synthetic Aperture Transmit Scheme. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2046-2056.	3.0	3
11	Strategic Undersampling and Recovery Using Compressed Sensing for Enhancing Ultrasound Image Quality. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 547-556.	3.0	15
12	Actuator-assisted Subpitch Translation-capable Transducer for Elastography: Preliminary Performance Assessment. Ultrasonic Imaging, 2020, 42, 15-26.	2.6	2
13	Ultrasound Receive-Side Strategies for Image Quality Enhancement in Low-Energy Illumination Based Photoacoustic Imaging. Progress in Optical Science and Photonics, 2020, , 79-112.	0.5	4
14	Toward Quantitative and Operator-independent Quasi-static Ultrasound Elastography: An Ex Vivo Feasibility Study. Ultrasonic Imaging, 2020, 42, 179-190.	2.6	3
15	Diverging beam transmit through limited aperture: A method to reduce ultrasound system complexity and yet obtain better image quality at higher frame rates. Ultrasonics, 2019, 91, 150-160.	3.9	17
16	Enhancing Image Quality of Photoacoustic Tomography Using Sub-Pitch Array Translation Approach: Simulation and Experimental Validation. IEEE Transactions on Biomedical Engineering, 2019, 66, 3543-3552.	4.2	8
17	Compressed Sensing with Gaussian Sampling Kernel for Ultrasound Imaging. Ultrasound in Medicine and Biology, 2019, 45, 1814-1829.	1.5	11
18	Axial Super-Resolution in Ultrasound Imaging. , 2019, , .		0

#	Article	IF	CITATIONS
19	Deep-Learning based Identification of Frames Containing Foetal Gender Region During Early Second Trimester Ultrasound Scanning. , 2019, , .		2
20	Lateral Resolution Improvement in Ultrasound Imaging System using Compressed Sensing: Initial Results., 2019, 2019, 2727-2730.		3
21	Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment. Ultrasonics, 2019, 93, 7-17.	3.9	11
22	A fast method for simulating ultrasound image from patient-specific CT data. Biomedical Signal Processing and Control, 2019, 48, 61-68.	5.7	2
23	Strategies to Obtain Subpitch Precision in Lateral Motion Estimation in Ultrasound Elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 448-456.	3.0	13
24	Quantitative Quasi-Static Ultrasound Elastography Using Reference Layer: A Preliminary Assessment. , 2018, , .		1
25	Improved Lateral Resolution Using sub Pitch Sampling of Ultrasound Data for Pulsed Laser Diode-Based Photoacoustic Imaging. , 2018, , .		2
26	Strategic Lateral Undersampling and Compressed Sensing Recovery in Ultrasound Imaging. , 2018, , .		4
27	Diverging beam with synthetic aperture technique for rotation elastography: preliminary experimental results. Physics in Medicine and Biology, 2018, 63, 20LT01.	3.0	6
28	Understanding the Contrast Mechanism in Rotation Elastogram: A Parametric Study. Ultrasound in Medicine and Biology, 2018, 44, 1860-1872.	1.5	2
29	Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study. Ultrasound in Medicine and Biology, 2017, 43, 1290-1301.	1.5	11
30	Rotation Elastogram Estimation Using Synthetic Transmit-aperture Technique: A Feasibility Study. Ultrasonic Imaging, 2017, 39, 189-204.	2.6	15
31	Design of a low cost ultrasound system using diverging beams and synthetic aperture approach: Preliminary study., 2017,,.		4
32	A Novel Elastographic Frame Quality Indicator and its use in Automatic Representative-Frame Selection from a Cine Loop. Ultrasound in Medicine and Biology, 2017, 43, 258-272.	1.5	7
33	Method to Estimate the Deviation from Ideal Uniaxial Compression during Freehand Elastography. Ultrasonic Imaging, 2015, 37, 70-82.	2.6	8
34	An analysis of the segmentation threshold used in axial–shear strain elastography. Ultrasonics, 2015, 55, 58-64.	3.9	3
35	Dynamic frame pairing in real-time freehand elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 979-985.	3.0	19
36	On the Advantages of Imaging the Axial-Shear Strain Component of the Total Shear Strain in Breast Tumors. Ultrasound in Medicine and Biology, 2012, 38, 2031-2037.	1.5	19

 #	Article	IF	CITATIONS
37	Axial-Shear Strain Elastography for Breast Lesion Classification: Further Results From In Vivo Data. Ultrasound in Medicine and Biology, 2011, 37, 189-197.	1.5	27
38	Axial–Shear Strain Distributions in an Elliptical Inclusion Model: Experimental Validation and in vivo Examples With Implications to Breast Tumor Classification. Ultrasound in Medicine and Biology, 2010, 36, 814-820.	1.5	31