
## Kangseok Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423484/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | RNase G complementation of rne null mutation identifies functional interrelationships with RNase E<br>in Escherichia coli. Molecular Microbiology, 2002, 43, 1445-1456.                                               | 2.5  | 164       |
| 2  | RraA. Cell, 2003, 114, 623-634.                                                                                                                                                                                       | 28.9 | 131       |
| 3  | Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Molecular Microbiology, 2006, 61, 394-406.                                                    | 2.5  | 112       |
| 4  | Crystal Structure of the Periplasmic Component of a Tripartite Macrolide-Specific Efflux Pump.<br>Journal of Molecular Biology, 2009, 387, 1286-1297.                                                                 | 4.2  | 111       |
| 5  | Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively<br>eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 2016, 104, 43-51.                   | 11.4 | 106       |
| 6  | FOXL2 Interacts with Steroidogenic Factor-1 (SF-1) and Represses SF-1-Induced CYP17 Transcription in<br>Granulosa Cells. Molecular Endocrinology, 2010, 24, 1024-1036.                                                | 3.7  | 104       |
| 7  | A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Molecular Microbiology, 2003, 48, 349-360.                                       | 2.5  | 96        |
| 8  | In vivo determination of RNA Structure-Function relationships: analysis of the 790 loop in ribosomal RNA 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1997, 269, 732-743.                                 | 4.2  | 71        |
| 9  | <i>Escherichia coli</i> ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of <i>bdm</i> mRNA in biofilm formation. Molecular Microbiology, 2010, 75, 413-425.            | 2.5  | 71        |
| 10 | Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode.<br>Molecules and Cells, 2015, 38, 180-186.                                                                        | 2.6  | 67        |
| 11 | RraA. a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell, 2003, 114, 623-34.                                                                                              | 28.9 | 66        |
| 12 | Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. Journal of Biotechnology, 2011, 155, 287-292.                                                                             | 3.8  | 61        |
| 13 | Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux<br>Pump in Gram-negative Bacteria. Journal of Biological Chemistry, 2011, 286, 17910-17920.                      | 3.4  | 58        |
| 14 | MCLâ€IES, a novel variant of MCLâ€I, associates with MCLâ€IL and induces mitochondrial cell death. FEBS<br>Letters, 2009, 583, 2758-2764.                                                                             | 2.8  | 57        |
| 15 | Divergent rRNAs as regulators of gene expression at the ribosome level. Nature Microbiology, 2019, 4, 515-526.                                                                                                        | 13.3 | 52        |
| 16 | Functional Implications of an Intermeshing Cogwheel-like Interaction between TolC and MacA in the<br>Action of Macrolide-specific Efflux Pump MacAB-TolC. Journal of Biological Chemistry, 2011, 286,<br>13541-13549. | 3.4  | 49        |
| 17 | Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion<br>System of Gram-Negative Bacteria. Structure, 2016, 24, 477-485.                                                  | 3.3  | 49        |
| 18 | A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. Chemical<br>Communications, 2010, 46, 4151.                                                                                         | 4.1  | 48        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Gold nanoparticle–DNA aptamer composites as a universal carrier for in vivo delivery of biologically<br>functional proteins. Journal of Controlled Release, 2014, 196, 287-294.                                              | 9.9  | 48        |
| 20 | Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Scientific Reports, 2017, 7, 13572.                                          | 3.3  | 48        |
| 21 | RNase E Maintenance of Proper FtsZ/FtsA Ratio Required for Nonfilamentous Growth of Escherichia<br>coli Cells but Not for Colony-Forming Ability. Journal of Bacteriology, 2006, 188, 5145-5152.                             | 2.2  | 46        |
| 22 | Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of<br>Gram-negative Bacteria. Journal of Biological Chemistry, 2012, 287, 11740-11750.                                                | 3.4  | 46        |
| 23 | Functional Relationships between the AcrA Hairpin Tip Region and the TolC Aperture Tip Region for the<br>Formation of the Bacterial Tripartite Efflux Pump AcrAB-TolC. Journal of Bacteriology, 2010, 192,<br>4498-4503.     | 2.2  | 45        |
| 24 | Crystal Structure of the Periplasmic Region of MacB, a Noncanonic ABC Transporter <sup>,</sup> .<br>Biochemistry, 2009, 48, 5218-5225.                                                                                       | 2.5  | 44        |
| 25 | Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif<br>for TolC in Gram-Negative Bacteria. PLoS ONE, 2012, 7, e40460.                                                      | 2.5  | 44        |
| 26 | Delivery of shRNA using gold nanoparticle–DNA oligonucleotide conjugates as a universal carrier.<br>Biochemical and Biophysical Research Communications, 2010, 398, 542-546.                                                 | 2.1  | 42        |
| 27 | Inhibition of Xenograft Tumor Growth by Gold Nanoparticle-DNA Oligonucleotide<br>Conjugates-Assisted Delivery of BAX mRNA. PLoS ONE, 2013, 8, e75369.                                                                        | 2.5  | 40        |
| 28 | The tip region of the MacA α-hairpin is important for the binding to TolC to the Escherichia coli<br>MacAB–TolC pump. Biochemical and Biophysical Research Communications, 2010, 394, 962-965.                               | 2.1  | 37        |
| 29 | Stability of the Osmoregulated Promoter-Derived <i>proP</i> mRNA Is Posttranscriptionally Regulated by RNase III in Escherichia coli. Journal of Bacteriology, 2015, 197, 1297-1305.                                         | 2.2  | 37        |
| 30 | NM23-H2 involves in negative regulation of Diva and Bcl2L10 in apoptosis signaling. Biochemical and Biophysical Research Communications, 2007, 359, 76-82.                                                                   | 2.1  | 35        |
| 31 | Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials, 2011, 32, 2593-2604.                                                                 | 11.4 | 34        |
| 32 | Inhibitory effects of RraA and RraB on RNAse E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. FEMS Microbiology Letters, 2008, 285, 10-15.                                            | 1.8  | 33        |
| 33 | FOXL2 posttranslational modifications mediated by GSK3Î <sup>2</sup> determine the growth of granulosa cell tumours. Nature Communications, 2014, 5, 2936.                                                                   | 12.8 | 33        |
| 34 | Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells.<br>Biochemical and Biophysical Research Communications, 2011, 416, 178-183.                                              | 2.1  | 30        |
| 35 | Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in <i>Escherichia coli</i> . Nucleic Acids Research, 2014, 42, 4669-4681. | 14.5 | 28        |
| 36 | Two Tandem RNase III Cleavage Sites Determine betT mRNA Stability in Response to Osmotic Stress in<br>Escherichia coli. PLoS ONE, 2014, 9, e100520.                                                                          | 2.5  | 25        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | RNase III Controls the Degradation of <i>corA</i> mRNA in Escherichia coli. Journal of Bacteriology, 2012, 194, 2214-2220.                                                                                                                                                    | 2.2  | 24        |
| 38 | RraA rescues Escherichia coli cells over-producing RNase E from growth arrest by modulating the ribonucleolytic activity. Biochemical and Biophysical Research Communications, 2006, 345, 1372-1376.                                                                          | 2.1  | 23        |
| 39 | HIP1R Interacts with a Member of Bcl-2 Family, BCL2L10, and Induces BAK-dependent Cell Death. Cellular<br>Physiology and Biochemistry, 2009, 23, 043-052.                                                                                                                     | 1.6  | 23        |
| 40 | Functional Role of bdm During Flagella Biogenesis in Escherichia coli. Current Microbiology, 2015, 70,<br>369-373.                                                                                                                                                            | 2.2  | 23        |
| 41 | Rediscovery of antimicrobial peptides as therapeutic agents. Journal of Microbiology, 2021, 59, 113-123.                                                                                                                                                                      | 2.8  | 23        |
| 42 | Heterogeneous rRNAs are differentially expressed during the morphological development of <i>Streptomyces coelicolor</i> . FEMS Microbiology Letters, 2007, 275, 146-152.                                                                                                      | 1.8  | 21        |
| 43 | FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku. Nature Communications, 2020, 11, 2010.                                                                                                                                           | 12.8 | 21        |
| 44 | Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold<br>nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2<br>domain. Biochemical and Biophysical Research Communications, 2015, 464, 392-395. | 2.1  | 20        |
| 45 | Inhibition of xenograft tumor growth in mice by gold nanoparticle-assisted delivery of short hairpin<br>RNAs against Mcl-1L. Journal of Biotechnology, 2011, 156, 89-94.                                                                                                      | 3.8  | 19        |
| 46 | The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC. Journal of Microbiology, 2013, 51, 154-159.                                                  | 2.8  | 19        |
| 47 | Impaired development of female mouse offspring maternally exposed to simazine. Environmental<br>Toxicology and Pharmacology, 2014, 38, 845-851.                                                                                                                               | 4.0  | 18        |
| 48 | The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq.<br>Journal of Biological Chemistry, 2019, 294, 16465-16478.                                                                                                                    | 3.4  | 18        |
| 49 | An alternative miRISC targets a cancerâ€associated coding sequence mutation in FOXL2. EMBO Journal, 2020, 39, e104719.                                                                                                                                                        | 7.8  | 18        |
| 50 | Interaction Mediated by the Putative Tip Regions of MdsA and MdsC in the Formation of a<br>Salmonella-Specific Tripartite Efflux Pump. PLoS ONE, 2014, 9, e100881.                                                                                                            | 2.5  | 17        |
| 51 | Effects of 3′ Terminus Modifications on mRNA Functional Decay during in Vitro Protein Synthesis.<br>Journal of Biological Chemistry, 2001, 276, 23268-23274.                                                                                                                  | 3.4  | 16        |
| 52 | Effects of Escherichia coli RraA Orthologs of Vibrio vulnificus on the Ribonucleolytic Activity of<br>RNase E In Vivo. Current Microbiology, 2009, 58, 349-353.                                                                                                               | 2.2  | 16        |
| 53 | Genetic Approaches to Studying Protein Synthesis: Effects of Mutations at Î <sup>~</sup> 516 and A535 in Escherichia<br>coli 16S rRNA. Journal of Nutrition, 2001, 131, 2994S-3004S.                                                                                          | 2.9  | 15        |
| 54 | MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2015, 83, 4266-4276.                                                                                                                                            | 2.2  | 15        |

Kangseok Lee

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regulation of Escherichia coli RNase III activity. Journal of Microbiology, 2015, 53, 487-494.                                                                                                                                | 2.8 | 14        |
| 56 | Identification of Amino Acid Residues in the Catalytic Domain of RNase E Essential for Survival of<br><i>Escherichia coli</i> : Functional Analysis of DNase I Subdomain. Genetics, 2008, 179, 1871-1879.                     | 2.9 | 13        |
| 57 | Functional analysis of Vibrio vulnificus RND efflux pumps homologous to Vibrio cholerae VexAB and<br>VexCD, and to Escherichia coli AcrAB. Journal of Microbiology, 2015, 53, 256-261.                                        | 2.8 | 13        |
| 58 | Enhanced protein-mediated binding between oligonucleotide–gold nanoparticle composites and cell<br>surfaces: co-transport of proteins and composites. Journal of Materials Chemistry, 2012, 22, 25036.                        | 6.7 | 12        |
| 59 | Molecular architecture of the bacterial tripartite multidrug efflux pump focusing on the adaptor bridging model. Journal of Microbiology, 2015, 53, 355-364.                                                                  | 2.8 | 12        |
| 60 | Characterization of Heterogeneous LSU rRNA Profiles in Streptomyces coelicolor Under Different<br>Growth Stages and Conditions. Current Microbiology, 2008, 57, 537-541.                                                      | 2.2 | 11        |
| 61 | Interaction between the α-barrel tip of Vibrio vulnificus TolC homologs and AcrA implies the adapter<br>bridging model. Journal of Microbiology, 2014, 52, 148-153.                                                           | 2.8 | 10        |
| 62 | Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochemical and Biophysical Research Communications, 2017, 494, 668-673.                                                                 | 2.1 | 10        |
| 63 | RNase C controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli. Journal of Microbiology, 2019, 57, 910-917.                                                                                      | 2.8 | 10        |
| 64 | Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III. FEMS Microbiology Letters, 2011, 315, 30-37.                                                                | 1.8 | 9         |
| 65 | Upregulation of RNase E activity by mutation of a site that uncompetitively interferes with RNA binding. RNA Biology, 2011, 8, 1022-1034.                                                                                     | 3.1 | 9         |
| 66 | RNase III Controls mltD mRNA Degradation in Escherichia coli. Current Microbiology, 2014, 68, 518-523.                                                                                                                        | 2.2 | 9         |
| 67 | Identification and Validation of Differential Phosphorylation Sites of the Nuclear FOXL2 Protein as<br>Potential Novel Biomarkers for Adult-Type Granulosa Cell Tumors. Journal of Proteome Research,<br>2015, 14, 2446-2456. | 3.7 | 9         |
| 68 | Functional Analysis of Vibrio vulnificus Orthologs of Escherichia coli RraA and RNase E. Current<br>Microbiology, 2016, 72, 716-722.                                                                                          | 2.2 | 9         |
| 69 | Substrate-dependent effects of quaternary structure on RNase E activity. Genes and Development, 2021, 35, 286-299.                                                                                                            | 5.9 | 9         |
| 70 | Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for<br>Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathogens, 2021, 17, e1009263.                             | 4.7 | 9         |
| 71 | Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits<br>Acinetobacter baumannii infection in mice. Journal of Microbiology, 2022, 60, 128-136.                                       | 2.8 | 9         |
| 72 | Gene delivery platforms. Biotechnology and Bioprocess Engineering, 2013, 18, 637-647.                                                                                                                                         | 2.6 | 8         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Journal of Microbiology, 2016, 54, 660-666.                                                             | 2.8 | 8         |
| 74 | RraAS1 inhibits the ribonucleolytic activity of RNase ES by interacting with its catalytic domain in Streptomyces coelicolor. Journal of Microbiology, 2017, 55, 37-43.                                                                    | 2.8 | 8         |
| 75 | Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. Journal of Microbiology, 2019, 57, 185-194.                                                                                    | 2.8 | 8         |
| 76 | The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Scientific Reports, 2019, 9, 17257.                                                                    | 3.3 | 8         |
| 77 | Genetic Analysis of the Invariant Residue G791 in <i>Escherichia coli</i> 16S rRNA Implicates RelA in Ribosome Function. Journal of Bacteriology, 2009, 191, 2042-2050.                                                                    | 2.2 | 7         |
| 78 | RNase G participates in processing of the 5′-end of 23S ribosomal RNA. Journal of Microbiology, 2011, 49,<br>508-511.                                                                                                                      | 2.8 | 7         |
| 79 | Intracellular delivery of recombinant proteins via gold nanoparticle–DNA aptamer composites is<br>independent of the protein physicochemical properties and cell type. Journal of Industrial and<br>Engineering Chemistry, 2017, 45, 5-10. | 5.8 | 7         |
| 80 | LRIG2 is a growth suppressor of Hec-1A and Ishikawa endometrial adenocarcinoma cells by regulating PI3K/AKT- and EGFR-mediated apoptosis and cell-cycle. Oncogenesis, 2018, 7, 3.                                                          | 4.9 | 7         |
| 81 | Functional Analysis of TolC Homologs in Vibrio vulnificus. Current Microbiology, 2014, 68, 729-734.                                                                                                                                        | 2.2 | 6         |
| 82 | Heterogeneous rRNA molecules encoded by Streptomyces coelicolor M145 genome are all expressed and assembled into ribosomes. Journal of Microbiology and Biotechnology, 2007, 17, 1708-11.                                                  | 2.1 | 6         |
| 83 | Studies on a Vibrio vulnificus Functional Ortholog of Escherichia coli RNase E Imply a Conserved<br>Function of RNase E-like Enzymes in Bacteria. Current Microbiology, 2011, 62, 861-865.                                                 | 2.2 | 5         |
| 84 | Crystal structure of Streptomyces coelicolor RraAS2, an unusual member of the RNase E inhibitor<br>RraA protein family. Journal of Microbiology, 2017, 55, 388-395.                                                                        | 2.8 | 5         |
| 85 | Functional implications of hexameric assembly of RraA proteins from Vibrio vulnificus. PLoS ONE, 2017, 12, e0190064.                                                                                                                       | 2.5 | 5         |
| 86 | Functional implications of the conserved action of regulators of ribonuclease activity. Journal of<br>Microbiology and Biotechnology, 2008, 18, 1353-6.                                                                                    | 2.1 | 5         |
| 87 | Trans-acting regulators of ribonuclease activity. Journal of Microbiology, 2021, 59, 341-359.                                                                                                                                              | 2.8 | 4         |
| 88 | Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method.<br>Journal of Microbiology, 2022, 60, 659-667.                                                                                          | 2.8 | 4         |
| 89 | A genetic system for RNase E variant-controlled overproduction of ColE1-type plasmid DNA. Journal of<br>Biotechnology, 2011, 152, 171-175.                                                                                                 | 3.8 | 3         |
| 90 | Modulation of RNase E Activity by Alternative RNA Binding Sites. PLoS ONE, 2014, 9, e90610.                                                                                                                                                | 2.5 | 3         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus. Journal of<br>Microbiology, 2021, 59, 1133-1141.                                                           | 2.8 | 3         |
| 92  | Expression of Divergent LSU rRNA Genes in the Vibrio vulnificus CMCP6 Genome During Both Infection and Non-Pathogenic Stages. Current Microbiology, 2011, 62, 133-138.                          | 2.2 | 2         |
| 93  | Functionalization of single-walled carbon nanotubes with ribonucleic acids. Journal of the Korean<br>Physical Society, 2013, 63, 2199-2203.                                                     | 0.7 | 2         |
| 94  | Bdm-Mediated Regulation of Flagellar Biogenesis in Escherichia coli and Salmonella enterica Serovar<br>Typhimurium. Current Microbiology, 2017, 74, 1015-1020.                                  | 2.2 | 2         |
| 95  | The immunomodulatory effect of antimicrobial peptide HPA3P restricts Brucella abortus 544 infection in BALB/c mice. Veterinary Microbiology, 2018, 225, 17-24.                                  | 1.9 | 2         |
| 96  | Genome analysis of Rubritalea profundi SAORIC-165T, the first deep-sea verrucomicrobial isolate, from the northwestern Pacific Ocean. Journal of Microbiology, 2019, 57, 413-422.               | 2.8 | 2         |
| 97  | Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microbial<br>Pathogenesis, 2022, 165, 105460.                                                              | 2.9 | 2         |
| 98  | Functional investigation of residue G791 of Escherichia coli 16S rRNA: implication of initiation factor 1 in the restoration of P-site function. FEMS Microbiology Letters, 2010, 313, 141-147. | 1.8 | 1         |
| 99  | Identification of a Hyperactive Variant of the SecM Motif Involved in Ribosomal Arrest. Current<br>Microbiology, 2012, 64, 17-23.                                                               | 2.2 | 1         |
| 100 | Implications of Streptomyces coelicolor RraAS1 as an activator of ribonuclease activity of Escherichia coli RNase E. Korean Journal of Microbiology, 2016, 52, 243-248.                         | 0.2 | 1         |
| 101 | Functional Conservation of RNase III-like Enzymes: Studies on a Vibrio vulnificus Ortholog of Escherichia coli RNase III. Current Microbiology, 2014, 68, 413-418.                              | 2.2 | 0         |
| 102 | Trans-acting regulators of ribonuclease activity. Journal of Microbiology, 2021, , .                                                                                                            | 2.8 | 0         |
| 103 | Response to Veitia et al. EMBO Journal, 2021, 40, e108671.                                                                                                                                      | 7.8 | 0         |