Raffaele Borrelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of radiationless transitions in large molecular systems: A Franck–Condon-based method accounting for displacements and rotations of all the normal coordinates. Journal of Chemical Physics, 2003, 119, 8437-8448.	3.0	123
2	The vibrational progressions of the N→V electronic transition of ethylene: A test case for the computation of Franck-Condon factors of highly flexible photoexcited molecules. Journal of Chemical Physics, 2006, 125, 194308.	3.0	90
3	Generating Function Approach to the Calculation of Spectral Band Shapes of Free-Base Chlorin Including Duschinsky and Herzberg–Teller Effects. Journal of Physical Chemistry A, 2012, 116, 9934-9940.	2.5	78
4	Tunable Redox Potential, Optical Properties, and Enhanced Stability of Modified Ferrocene-Based Complexes. ACS Omega, 2019, 4, 14780-14789.	3.5	71
5	Transparent and Colorless Dye-Sensitized Solar Cells Exceeding 75% Average Visible Transmittance. Jacs Au, 2021, 1, 409-426.	7.9	66
6	Catalytic and Radiative Behaviors of ZrB2-SiC Ultrahigh Temperature Ceramic Composites. Journal of Spacecraft and Rockets, 2006, 43, 1004-1012.	1.9	59
7	Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach. Journal of Chemical Physics, 2016, 145, 224101.	3.0	58
8	The temperature dependence of radiationless transition rates from ab initio computations. Physical Chemistry Chemical Physics, 2011, 13, 4420.	2.8	57
9	Franck–Condon factors—Computational approaches and recent developments. Canadian Journal of Chemistry, 2013, 91, 495-504.	1.1	52
10	Computational investigation of the photoinduced homolytic dissociation of water in the pyridine–water complex. Physical Chemistry Chemical Physics, 2013, 15, 5957.	2.8	51
11	Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics. Scientific Reports, 2017, 7, 9127.	3.3	50
12	The electron photodetachment spectrum of c-C4F8â^': A test case for the computation of Franck-Condon factors of highly flexible molecules. Journal of Chemical Physics, 2008, 128, 044303.	3.0	46
13	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24173-24177.	2.8	41
14	Franck–Condon factors in curvilinear coordinates: the photoelectron spectrum of ammonia. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	38
15	Photoelectron Spectrum of Ammonia, a Test Case for the Calculation of Franckâ^'Condon Factors in Molecules Undergoing Large Geometrical Displacements upon Photoionization. Journal of Physical Chemistry A, 2009, 113, 14831-14837.	2.5	36
16	Quantum Dynamics of Electron Transfer from Bacteriochlorophyll to Pheophytin in Bacterial Reaction Centers. Journal of Chemical Theory and Computation, 2007, 3, 673-680.	5.3	35
17	Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion. Journal of Chemical Physics, 2019, 150, 234102.	3.0	35
18	Finite temperature quantum dynamics of complex systems: Integrating <scp>thermoâ€field</scp> theories and <scp>tensorâ€train</scp> methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1539.	14.6	35

RAFFAELE BORRELLI

#	Article	IF	CITATIONS
19	Elementary electron transfer reactions: from basic concepts to recent computational advances. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 542-559.	14.6	32
20	Dynamics of Coupled Electron–Boson Systems with the Multiple Davydov D ₁ <i>Ansatz</i> and the Generalized Coherent State. Journal of Physical Chemistry A, 2017, 121, 8757-8770.	2.5	32
21	Absorption Band Shapes of a Push–Pull Dye Approaching the Cyanine Limit: A Challenging Case for First Principle Calculations. Journal of Physical Chemistry A, 2016, 120, 5581-5589.	2.5	31
22	Hole Hopping Rates in Organic Semiconductors: A Second-Order Cumulant Approach. Journal of Chemical Theory and Computation, 2018, 14, 1594-1601.	5.3	31
23	Second-Order Cumulant Approach for the Evaluation of Anisotropic Hole Mobility in Organic Semiconductors. Journal of Physical Chemistry C, 2018, 122, 25849-25857.	3.1	29
24	Role of Intramolecular Vibrations in Long-Range Electron Transfer between Pheophytin and Ubiquinone in Bacterial Photosynthetic Reaction Centers. Biophysical Journal, 2005, 89, 830-841.	0.5	28
25	Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine-based squaraine dye. Physical Chemistry Chemical Physics, 2014, 16, 2390-2398.	2.8	28
26	Quantum dynamics of electron-transfer reactions: photoinduced intermolecular electron transfer in a porphyrin–quinone complex. Molecular Physics, 2012, 110, 751-763.	1.7	25
27	Dicyanovinyl and Cyano-Ester Benzoindolenine Squaraine Dyes: The Effect of the Central Functionalization on Dye-Sensitized Solar Cell Performance. Energies, 2016, 9, 486.	3.1	25
28	Excited state photophysics of squaraine dyes for photovoltaic applications: an alternative deactivation scenario. Journal of Materials Chemistry C, 2018, 6, 2778-2785.	5.5	25
29	Vibronic couplings and coherent electron transfer in bridged systems. Physical Chemistry Chemical Physics, 2015, 17, 30937-30945.	2.8	23
30	First-principles study of photoinduced electron-transfer dynamics in a Mg–porphyrin–quinone complex. Chemical Physics Letters, 2010, 498, 230-234.	2.6	22
31	Electron transfer rates and Franck–Condon factors: an application to the early electron transfer steps in photosynthetic reaction centers. Theoretical Chemistry Accounts, 2007, 117, 957-967.	1.4	21
32	Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna–Matthews–Olson Complex. Journal of Chemical Theory and Computation, 2021 17, 4316, 4331	5.3	20
33	Quantum Dynamics of Radiationless Electronic Transitions Including Normal Modes Displacements and Duschinsky Rotations: A Second-Order Cumulant Approach. Journal of Chemical Theory and Computation, 2015, 11, 415-422.	5.3	19
34	Quantum dynamics of electronic transitions with Gauss-Hermite wave packets. Journal of Chemical Physics, 2016, 144, 114102.	3.0	19
35	Thermal Schrödinger Equation: Efficient Tool for Simulation of Manyâ€Body Quantum Dynamics at Finite Temperature. Annalen Der Physik, 2017, 529, 1700200.	2.4	19
36	Origin of Unexpectedly Simple Oscillatory Responses in the Excited-State Dynamics of Disordered Molecular Aggregates. Journal of Physical Chemistry Letters, 2019, 10, 2806-2810.	4.6	19

RAFFAELE BORRELLI

#	Article	IF	CITATIONS
37	Proton tunneling in a two-dimensional potential energy surface with a non-linear system–bath interaction: Thermal suppression of reaction rate. Journal of Chemical Physics, 2020, 152, 214114.	3.0	19
38	Theoretical study of charge-transfer processes at finite temperature using a novel thermal SchrĶdinger equation. Chemical Physics, 2018, 515, 236-241.	1.9	17
39	Transient and Enduring Electronic Resonances Drive Coherent Long Distance Charge Transport in Molecular Wires. Journal of Physical Chemistry Letters, 2019, 10, 1845-1851.	4.6	17
40	Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. Journal of Physical Chemistry B, 2021, 125, 5397-5407.	2.6	16
41	Hole hopping rates in single strand oligonucleotides. Chemical Physics, 2014, 440, 25-30.	1.9	15
42	Simulation of Time- and Frequency-Resolved Four-Wave-Mixing Signals at Finite Temperatures: A Thermo-Field Dynamics Approach. Journal of Chemical Theory and Computation, 2021, 17, 4359-4373.	5.3	15
43	The occurrence of electron transfer in aromatic nitration: dynamical aspects. Theoretical Chemistry Accounts, 2000, 104, 218-222.	1.4	14
44	Crossing Electronic States in the Franck–Condon Zone of Carbon Dioxide: A Five-Fold Closed Seam of Conical and Glancing Intersections. Journal of Physical Chemistry Letters, 2012, 3, 3223-3227.	4.6	14
45	Generalized Huang-Rhys factors for molecular aggregates. Chemical Physics, 2020, 528, 110495.	1.9	14
46	Perturbative calculation of Franck–Condon integrals: New hints for a rational implementation. Journal of Chemical Physics, 2008, 129, 064116.	3.0	13
47	The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics. Chemical Physics, 2016, 481, 91-98.	1.9	13
48	Efficient orientational averaging of nonlinear optical signals in multi-chromophore systems. Journal of Chemical Physics, 2017, 147, 044114.	3.0	13
49	Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. Journal of Chemical Physics, 2022, 156, .	3.0	13
50	Excited state intramolecular proton transfer in free base hemiporphyrazine. Chemical Physics Letters, 2002, 354, 160-164.	2.6	12
51	Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. Journal of Chemical Physics, 2021, 155, 134102.	3.0	11
52	Proton Assisted Electron Transfer. Advances in Quantum Chemistry, 2000, 36, 301-322.	0.8	10
53	Disentangling Electronic and Vibrational Effects in the Prediction of Band Shapes for Singlet–Triplet Transitions. Journal of Physical Chemistry C, 2019, 123, 14173-14179.	3.1	10
	Franck–Condon analysis of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si4.gif" display="inline"</mml:math>		

⁵⁴ overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SF</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mn>6</m electron photodetachment spectrum. Chemical Physics Letters, 2007, 445, 84-88.

RAFFAELE BORRELLI

#	Article	IF	CITATIONS
55	First Principle Analysis of Charge Dissociation and Charge Recombination Processes in Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 18870-18876.	3.1	8
56	First-Principle Calculations of the Band Shapes of Singlet–Triplet Transitions. Journal of Physical Chemistry C, 2016, 120, 24605-24614.	3.1	8
57	Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C, 2022, 10, 7216-7226.	5.5	8
58	Quantum dynamics of vibrational energy flow in oscillator chains driven by anharmonic interactions. New Journal of Physics, 2020, 22, 123002.	2.9	7
59	A Simple Method for Estimating Activation Energies of Proton-Transfer Reactionsâ€. Journal of Physical Chemistry A, 2002, 106, 7018-7025.	2.5	6
60	Probing photoinduced proton coupled electron transfer process by means of two-dimensional resonant electronic–vibrational spectroscopy. Journal of Chemical Physics, 2021, 154, 144104.	3.0	6
61	Ultrafast carrier dynamics at organic donor–acceptor interfaces—a quantum-based assessment of the hopping model. JPhys Materials, 2022, 5, 024001.	4.2	6
62	Intramolecular reorganization energies and Franck–Condon integrals for ET from pheophytin to quinone in bacterial photosynthetic reaction centers. Chemical Physics Letters, 2005, 413, 210-215.	2.6	5
63	Spectroscopic investigation of squaraine dyes. Proceedings of SPIE, 2017, , .	0.8	4
64	Reliable Predictions of Benzophenone Singlet–Triplet Transition Rates: A Second-Order Cumulant Approach. Journal of Physical Chemistry A, 2021, 125, 43-49.	2.5	3
65	Hierarchical Equations-of-Motion Method for Momentum System–Bath Coupling. Journal of Physical Chemistry B, 2021, 125, 4863-4873.	2.6	2
66	Franck–Condon factors in curvilinear coordinates: the photoelectron spectrum of ammonia. Highlights in Theoretical Chemistry, 2013, , 207-216.	0.0	0