Tongfei T Wu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423372/publications.pdf Version: 2024-02-01

Τονςεει Τ Μ/υ Μ/υ

#	Article	IF	CITATIONS
1	Highly stretchable covalent adaptive networks enabled by dynamic boronic diester linkages with nitrogen→boron coordination. Journal of Polymer Science, 2022, 60, 72-80.	3.8	7
2	Preparation and properties of selfâ€healable solidâ€state polymer electrolytes based on covalent adaptive networks enabled by disulfide bond. Journal of Polymer Science, 2022, 60, 2582-2590.	3.8	3
3	Rheological and mechanical properties of dynamic covalent polymers based on imine bond. Journal of Applied Polymer Science, 2021, 138, 50953.	2.6	6
4	Extremely Stretchable Vitrimers. Macromolecular Rapid Communications, 2020, 41, e2000265.	3.9	14
5	Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres. Journal of Colloid and Interface Science, 2020, 571, 239-252.	9.4	67
6	A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors. Journal of Materials Chemistry C, 2018, 6, 6200-6207.	5.5	71
7	Facile and Scalable Synthesis Method for High-Quality Few-Layer Graphene through Solution-Based Exfoliation of Graphite. ACS Applied Materials & Interfaces, 2017, 9, 4548-4557.	8.0	21
8	Autonomous self-healing multiwalled carbon nanotube nanocomposites with piezoresistive effect. RSC Advances, 2017, 7, 20422-20429.	3.6	22
9	Facile Fabrication of Porous Conductive Thermoplastic Polyurethane Nanocomposite Films via Solution Casting. Scientific Reports, 2017, 7, 17470.	3.3	33
10	Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber. ACS Applied Materials & Interfaces, 2017, 9, 43239-43249.	8.0	15
11	A mechanically and electrically self-healing graphite composite dough for stencil-printable stretchable conductors. Journal of Materials Chemistry C, 2016, 4, 4150-4154.	5.5	47
12	One-Step Synthesis of Graphene Oxide–Polyamidoamine Dendrimer Nanocomposite Hydrogels by Self-Assembly. Industrial & Engineering Chemistry Research, 2016, 55, 6113-6121.	3.7	33
13	Humidity sensing properties of transferable polyaniline thin films formed at the air–water interface. RSC Advances, 2016, 6, 96935-96941.	3.6	19
14	Synthesis of Multiwalled Carbon Nanotube-Reinforced Polyborosiloxane Nanocomposites with Mechanically Adaptive and Self-Healing Capabilities for Flexible Conductors. ACS Applied Materials & Interfaces, 2016, 8, 24071-24078.	8.0	92
15	Synthesis of water-soluble dopamine–melanin for ultrasensitive and ultrafast humidity sensor. Sensors and Actuators B: Chemical, 2016, 224, 178-184.	7.8	22
16	Cellulose fiber networks reinforced with glutaraldehyde–chitosan complexes. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
17	An Ultrasensitive and Fast Moisture Sensor Based on Selfâ€Assembled Dopamine–Melanin Thin Films. Advanced Materials Interfaces, 2015, 2, 1500203.	3.7	23
18	Dopamine-Melanin Nanofilms for Biomimetic Structural Coloration. Biomacromolecules, 2015, 16, 660-666.	5.4	89

TONGFEI T WU WU

#	Article	IF	CITATIONS
19	A preparation method of cellulose fiber networks reinforced by glutaraldehyde-treated chitosan. Cellulose, 2015, 22, 1955-1961.	4.9	15
20	Cellulose fibre networks reinforced with carboxymethyl cellulose/chitosan complex layer-by-layer. Carbohydrate Polymers, 2014, 114, 500-505.	10.2	31
21	Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 279-286.	3.1	86
22	Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites Part B: Engineering, 2014, 56, 717-723.	12.0	148
23	Mechanically Adaptive and Shapeâ€Memory Behaviour of Chitosanâ€Modified Cellulose Whisker/Elastomer Composites in Different pH Environments. ChemPhysChem, 2014, 15, 2794-2800.	2.1	11
24	Biomimetic chitosanâ€ŧreated clay–elastomer composites with waterâ€responsive mechanically dynamic properties. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 55-62.	2.1	6
25	Poly(glycerol sebacate urethane)–Cellulose Nanocomposites with Water-Active Shape-Memory Effects. Biomacromolecules, 2014, 15, 2663-2671.	5.4	110
26	Poly(vinyl alcohol) particle-reinforced elastomer composites with water-active shape-memory effects. European Polymer Journal, 2014, 53, 230-237.	5.4	34
27	Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer. Composites Part B: Engineering, 2013, 48, 10-17.	12.0	28
28	Poly(methacrylic acid)â€grafted clay–thermoplastic elastomer composites with waterâ€induced shapeâ€memory effects. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1513-1522.	2.1	20
29	Carbon nanotube/polypropylene composite particles for microwave welding. Journal of Applied Polymer Science, 2012, 126, E283.	2.6	30
30	Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes. Materials Chemistry and Physics, 2011, 129, 932-938.	4.0	28
31	Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers, 2011, 83, 1908-1915.	10.2	246
32	Chitosanâ€Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small, 2011, 7, 1569-1578.	10.0	800
33	Waterâ€Soluble Poly(<i>N</i> â€isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Advanced Functional Materials, 2011, 21, 2754-2763.	14.9	426
34	Highly electrically conductive and injection moldable polymeric composites. Journal of Applied Polymer Science, 2011, 121, 2969-2975.	2.6	6
35	Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly(vinylidene) Tj ETQq1 1 0.7	84314 rgB 4.7	BT /Qverlock
36	A parallel approach to direct resolution of albuterol. Science Bulletin, 2010, 55, 2814-2816.	1.7	3

3

TONGFEI T WU WU

#	Article	IF	CITATIONS
37	Preparation and characterization of transparent poly(methyl methacrylate)/Na ⁺ â€MMT nanocomposite films by solution casting. Journal of Applied Polymer Science, 2010, 115, 2773-2778.	2.6	13
38	Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid. Journal of Colloid and Interface Science, 2010, 348, 265-270.	9.4	42
39	Synthesis and properties of monomer casting polyamide 6/poly(methyl methacrylate) blends. Journal of Applied Polymer Science, 2009, 111, 101-107.	2.6	8
40	Synthesis and characterization of monomer asting polyamide 6/polymethacrylic ionomer blends. Journal of Applied Polymer Science, 2009, 111, 2970-2979.	2.6	4
41	Characterization of poly(vinylidene fluoride)/Na ⁺ â€MMT composites: An investigation into the βâ€crystalline nucleation effect of Na ⁺ â€MMT. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 903-911.	2.1	17
42	Preparation and characterization of poly(Îμ-caprolactone)/Na+-MMT nanocomposites. Applied Clay Science, 2009, 45, 105-110.	5.2	48
43	Evaluation of ammonium terminated PMMA as compatibilizers for monomer casting polyamide6/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1802-1810.	2.1	4
44	Preparation of exfoliated polyacrylic clay nanocomposites with high loading: An investigation into the intercalation of ammoniumâ€ŧerminated polyacrylic acid and polyacrylates. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2335-2340.	2.1	8
45	Reinforcing network structure: Analysis of the phase morphology and mechanical properties of polymer blends [poly(methyl methacrylate)/poly(ïµâ€caprolactone)] with the addition of a third polymer [poly(vinyl chloride)]. Journal of Applied Polymer Science, 2008, 108, 1044-1048.	2.6	1
46	Comparison of crystallization behaviors of poly(εâ€caprolactone) in confined environment with that in bulk. Journal of Applied Polymer Science, 2008, 107, 3796-3803.	2.6	9
47	Evaluation of polymethacrylic ionomer as compatibilizers for MCPA6/clay composites. Journal of Applied Polymer Science, 2008, 110, 2727-2732.	2.6	3
48	Tapes of Cyclic Water Tetramers in the Double-Helical Complex[Cd2(bpa)2Cl4]·6 H2O. European Journal of Inorganic Chemistry, 2005, 2005, 1230-1234.	2.0	37
49	Nontraditional oil sorbents: Hydrophilic sponges with hydrophobic skin layer for efficient oil spill remediation. Science China Materials, 0, , 1.	6.3	3