
Caroline M Curtin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. International Journal of Molecular Sciences, 2022, 23, 1460.	1.8	15
2	Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomaterials Science, 2022, 10, 2462-2483.	2.6	19
3	Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nature Reviews Rheumatology, 2022, 18, 67-84.	3.5	117
4	The Effect of Fluid Flow Shear Stress and Substrate Stiffness on Yes-Associated Protein (YAP) Activity and Osteogenesis in Murine Osteosarcoma Cells. Cancers, 2021, 13, 3128.	1.7	6
5	Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomaterialia, 2021, 132, 360-378.	4.1	25
6	Co-culture and 3D tumor models for drug/gene therapy testing. , 2020, , 505-532.		0
7	Layered Double Hydroxide as a Potent Non-viral Vector for Nucleic Acid Delivery Using Gene-Activated Scaffolds for Tissue Regeneration Applications. Pharmaceutics, 2020, 12, 1219.	2.0	26
8	Preclinical models for neuroblastoma: Advances and challenges. Cancer Letters, 2020, 474, 53-62.	3.2	34
9	Rapid bone repair with the recruitment of CD206+M2-like macrophages using non-viral scaffold-mediated miR-133a inhibition of host cells. Acta Biomaterialia, 2020, 109, 267-279.	4.1	30
10	microRNA Modulation. , 2020, , 511-576.		0
11	microRNA Modulation. , 2019, , 1-66.		0
12	Scaffoldâ€Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair. Journal of Orthopaedic Research, 2019, 37, 1671-1680.	1.2	34
13	Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 24-33.	1.6	37
14	A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomaterialia, 2018, 70, 84-97.	4.1	49
15	Scaffoldâ€Based microRNA Therapies in Regenerative Medicine and Cancer. Advanced Healthcare Materials, 2018, 7, 1700695.	3.9	55
16	Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials, 2017, 149, 116-127.	5.7	106
17	Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Molecular Pharmaceutics, 2017, 14, 42-52.	2.3	44
18	Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 23477-23488.	4.0	70

CAROLINE M CURTIN

#	Article	IF	CITATIONS
19	Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. International Journal of Pharmaceutics, 2016, 511, 1058-1069.	2.6	30
20	Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Scientific Reports, 2016, 6, 27941.	1.6	68
21	A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. Journal of Controlled Release, 2015, 200, 42-51.	4.8	85
22	Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release, 2015, 215, 39-54.	4.8	184
23	The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials, 2015, 66, 53-66.	5.7	90
24	Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. Journal of Controlled Release, 2015, 210, 84-94.	4.8	95
25	Combinatorial Gene Therapy Accelerates Bone Regeneration: Nonâ€Viral Dual Delivery of VEGF and BMP2 in a Collagenâ€Nanohydroxyapatite Scaffold. Advanced Healthcare Materials, 2015, 4, 223-227.	3.9	151
26	Non-viral gene-activated matrices. Organogenesis, 2013, 9, 22-28.	0.4	40
27	Innovative Collagen Nanoâ€Hydroxyapatite Scaffolds Offer a Highly Efficient Nonâ€Viral Gene Delivery Platform for Stem Cellâ€Mediated Bone Formation. Advanced Materials, 2012, 24, 749-754.	11.1	182
28	Mesenchymal Stem Cells and Osteoarthritis: Remedy or Accomplice?. Human Gene Therapy, 2010, 21, 1239-1250.	1.4	62