Qinqin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BACILLARY LAYER DETACHMENT OVERLYING REDUCED CHORIOCAPILLARIS FLOW IN ACUTE IDIOPATHIC MACULOPATHY. Retinal Cases and Brief Reports, 2022, 16, 59-66.	0.6	23
2	Interocular asymmetry of choroidal thickness and vascularity index measurements in normal eyes assessed by swept-source optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 781-795.	2.0	8
3	Correlation Between Localized Choriocapillaris Perfusion and Macular Function in Eyes with Geographic Atrophy. American Journal of Ophthalmology, 2022, 234, 174-182.	3.3	7
4	Optical Coherence Tomography Measurements of the Retinal Pigment Epithelium to Bruch Membrane Thickness Around Geographic Atrophy Correlate With Growth. American Journal of Ophthalmology, 2022, 236, 249-260.	3.3	17
5	Automatic geographic atrophy segmentation using optical attenuation in OCT scans with deep learning. Biomedical Optics Express, 2022, 13, 1328.	2.9	17
6	Swept-Source Optical Coherence Tomography Detection of Bruch's Membrane and Choriocapillaris Abnormalities in Sorsby Macular Dystrophy. Retina, 2022, Publish Ahead of Print, .	1.7	3
7	Guidelines for Imaging the Choriocapillaris Using OCT Angiography. American Journal of Ophthalmology, 2021, 222, 92-101.	3.3	72
8	Multimodal Imaging Features and Clinical Relevance of Subretinal Lipid Globules. American Journal of Ophthalmology, 2021, 222, 112-125.	3.3	8
9	Correlations Between Choriocapillaris and Choroidal Measurements and the Growth of Geographic Atrophy Using Swept Source OCT Imaging. American Journal of Ophthalmology, 2021, 224, 321-331.	3.3	40
10	Swept-Source OCT Angiographic Characteristics of Treatment-NaÃ ⁻ ve Nonexudative Macular Neovascularization in AMD Prior to Exudation. , 2021, 62, 14.		16
11	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	2.9	11
12	Correlations Between Different Choriocapillaris Flow Deficit Parameters in Normal Eyes Using Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 209, 18-26.	3.3	19
13	Ultra-Widefield Protocol Enhances Automated Classification of Diabetic Retinopathy Severity with OCT Angiography. Ophthalmology Retina, 2020, 4, 415-424.	2.4	32
14	Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmology Retina, 2020, 4, 204-215.	2.4	86
15	Macular microvascular parameters in the ganglion cell-inner plexiform layer derived by optical coherence tomography angiography: Vascular structure-central visual function analysis. PLoS ONE, 2020, 15, e0240111.	2.5	4
16	Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 220, 115-127.	3.3	13
17	Automated vessel diameter quantification and vessel tracing for <scp>OCT</scp> angiography. Journal of Biophotonics, 2020, 13, e202000248.	2.3	7
18	Reduced Pulsatile Trabecular Meshwork Motion in Eyes With Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography. , 2020, 61, 21.		24

#	Article	IF	CITATIONS
19	Retinal Capillary Nonperfusion on OCT-Angiography and Its Relationship to Kidney Function in Patients with Diabetes. Journal of Ophthalmology, 2020, 2020, 1-9.	1.3	5
20	Microvascular Changes in the Choriocapillaris of Diabetic Patients Without Retinopathy Investigated by Swept-Source OCT Angiography. , 2020, 61, 50.		51
21	Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. American Journal of Ophthalmology, 2020, 213, 161-176.	3.3	74
22	OCT Angiography to Predict Geographic Atrophy Progression using Choriocapillaris Flow Void as a Biomarker. Translational Vision Science and Technology, 2020, 9, 6.	2.2	13
23	Relative retinal flow velocity detection using optical coherence tomography angiography imaging. Biomedical Optics Express, 2020, 11, 6710.	2.9	13
24	Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: A swept-source optical coherence tomography angiography study. PLoS ONE, 2020, 15, e0243830.	2.5	18
25	Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2020, 11, 948-956.	2.0	20
26	Profound Presentation of Retinopathy in a Patient with Sickle Cell trait and Diabetes Mellitus. Journal of Ophthalmic and Vision Research, 2020, 15, 116-117.	1.0	1
27	Optical coherence tomography angiography measures blood pulsatile waveforms at variable tissue depths. Quantitative Imaging in Medicine and Surgery, 2020, 11, 907-917.	2.0	4
28	<p>Quantifying choriocapillaris hypoperfusion in patients with choroidal neovascularization using swept-source OCT angiography</p> . Clinical Ophthalmology, 2019, Volume 13, 1613-1620.	1.8	12
29	Two-Year Risk of Exudation in Eyes with Nonexudative Age-Related Macular Degeneration and Subclinical Neovascularization Detected with Swept Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 208, 1-11.	3.3	57
30	The evaluation of spontaneous Descemet's membrane reattachment using swept-source optical coherence tomography: a case report. Quantitative Imaging in Medicine and Surgery, 2019, 9, 535-536.	2.0	0
31	Generating retinal flow maps from structural optical coherence tomography with artificial intelligence. Scientific Reports, 2019, 9, 5694.	3.3	61
32	Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmology Retina, 2019, 3, 478-488.	2.4	90
33	Cone Structure Persists Beyond Margins of Short-Wavelength Autofluorescence in Choroideremia. , 2019, 60, 4931.		13
34	Age-dependent Changes in the Macular Choriocapillaris of Normal Eyes Imaged With Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 200, 110-122.	3.3	108
35	Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging. Biomedical Optics Express, 2019, 10, 2383.	2.9	37
36	Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes. Biomedical Optics Express, 2019, 10, 2847.	2.9	15

#	Article	IF	CITATIONS
37	Analysis of the characteristics of optical coherence tomography angiography for retinal cavernous hemangioma. Medicine (United States), 2018, 97, e9940.	1.0	7
38	Suspended Scattering Particles in Motion: A Novel Feature of OCT Angiography in Exudative Maculopathies. Ophthalmology Retina, 2018, 2, 694-702.	2.4	56
39	Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. Ophthalmology, 2018, 125, 255-266.	5.2	165
40	Quantifying choriocapillaris flow deficits using global and localized thresholding methods: a correlation study. Quantitative Imaging in Medicine and Surgery, 2018, 8, 1102-1112.	2.0	19
41	Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quantitative Imaging in Medicine and Surgery, 2018, 8, 743-753.	2.0	65
42	Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quantitative Imaging in Medicine and Surgery, 2018, 8, 658-666.	2.0	69
43	Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems. Scientific Reports, 2018, 8, 16826.	3.3	46
44	OCT Angiography and Cone Photoreceptor Imaging in Geographic Atrophy. , 2018, 59, 5985.		15
45	Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiology of Aging, 2018, 70, 148-159.	3.1	68
46	A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. , 2018, 59, 203.		219
47	Comparing imaging capabilities of spectral domain and swept source optical coherence tomography angiography in healthy subjects and central serous retinopathy. Eye and Vision (London, England), 2018, 5, 19.	3.0	12
48	Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT. Biomedical Optics Express, 2018, 9, 6067.	2.9	56
49	Projection Artifact Removal Improves Visualization and Quantitation of Macular Neovascularization Imaged by Optical Coherence Tomography Angiography. Ophthalmology Retina, 2017, 1, 124-136.	2.4	99
50	Association between OCT-based microangiography perfusion indices and diabetic retinopathy severity. British Journal of Ophthalmology, 2017, 101, 960-964.	3.9	23
51	Optical coherence tomography angiography-based capillary velocimetry. Journal of Biomedical Optics, 2017, 22, 066008.	2.6	41
52	Wide field OCT angiography by using swept source OCT in living human eye. , 2017, , .		1
53	Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Eyes With Glaucoma and Single-Hemifield Visual Field Loss. JAMA Ophthalmology, 2017, 135, 461.	2.5	94
54	Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 1287-1295.	1.9	35

4

#	Article	IF	CITATIONS
55	Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms. , 2017, 58, 1506.		95
56	Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. , 2017, 58, 1499.		178
57	Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography. Clinical Ophthalmology, 2017, Volume 11, 889-895.	1.8	6
58	Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration. , 2017, 58, 5098.		18
59	Robust principal component analysis in optical micro-angiography. Quantitative Imaging in Medicine and Surgery, 2017, 7, 654-667.	2.0	15
60	Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid. Journal of Biomedical Optics, 2017, 22, 1.	2.6	18
61	Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity. Quantitative Imaging in Medicine and Surgery, 2016, 6, 178-183.	2.0	12
62	Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 125-133.	2.0	61
63	Highly efficient eigen decomposition based statistical optical microangiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 557-563.	2.0	25
64	Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography–Based Microangiography. , 2016, 57, OCT475.		120
65	Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. Biomedical Optics Express, 2016, 7, 2709.	2.9	48
66	Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 066008.	2.6	225
67	Evaluation of bilateral central retinal artery occlusions with optical coherence tomography-based microangiography: a case report. Journal of Medical Case Reports, 2016, 10, 307.	0.8	10
68	Wide-field optical coherence tomography based microangiography for retinal imaging. Scientific Reports, 2016, 6, 22017.	3.3	110
69	Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans. Optics Letters, 2016, 41, 2330.	3.3	35
70	Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 065002.	2.6	48
71	Optical coherence tomography based microangiography as a non-invasive imaging modality for early detection of choroido-neovascular membrane in choroidal rupture. SpringerPlus, 2016, 5, 1470.	1.2	7
72	Optical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1309-1319.	5.2	230

#	Article	IF	CITATIONS
73	Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS ONE, 2016, 11, e0154691.	2.5	109
74	SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF NEOVASCULAR MACULAR TELANGIECTASIA TYPE 2. Retina, 2015, 35, 2285-2299.	1.7	97
75	Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomedical Optics Express, 2015, 6, 4130.	2.9	157
76	Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography. Journal of Innovative Optical Health Sciences, 2015, 08, 1550012.	1.0	19
77	Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. Journal of Biomedical Optics, 2015, 20, 066008.	2.6	87
78	Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo. Biomedical Optics Express, 2015, 6, 1195.	2.9	22
79	Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. Journal of Biomedical Optics, 2015, 20, 100901.	2.6	300
80	Multifunctional 1050 nm Spectral Domain OCT System at 147 kHz for Posterior Eye Imaging. Sovremennye Tehnologii V Medicine, 2015, 7, 7-12.	1.1	2
81	Quantitative Diagnosis of Colorectal Polyps by Spectral Domain Optical Coherence Tomography. BioMed Research International, 2014, 2014, 1-7.	1.9	7
82	Swept-Source OCT Angiography of Macular Telangiectasia Type 2. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 369-380.	0.7	105
83	Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-based Optical Microangiography Algorithms. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 382-389.	0.7	183
84	Depth of focus enhancement of a modified imaging quasi-fractal zone plate. Optics and Laser Technology, 2012, 44, 2140-2144.	4.6	7