Sara Mascheretti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423312/publications.pdf

Version: 2024-02-01

471371 501076 31 862 17 28 citations h-index g-index papers 31 31 31 981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Translational Psychiatry, 2017, 7, e987-e987.	2.4	91
2	DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatric Genetics, 2012, 22, 25-30.	0.6	71
3	The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. Cerebral Cortex, 2015, 25, 1685-1695.	1.6	65
4	An assessment of geneâ€byâ€environment interactions inÂdevelopmental dyslexiaâ€related phenotypes. Genes, Brain and Behavior, 2013, 12, 47-55.	1.1	55
5	The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Scientific Reports, 2016, 6, 22157.	1.6	55
6	KIAAO319 and ROBO1: evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia. Journal of Human Genetics, 2014, 59, 189-197.	1.1	52
7	Pleiotropic Effects of DCDC2 and DYX1C1 Genes on Language and Mathematics Traits in Nuclear Families of Developmental Dyslexia. Behavior Genetics, 2011, 41, 67-76.	1.4	43
8	The DCDC2/intron 2 deletion and white matter disorganization: Focus on developmental dyslexia. Cortex, 2014, 57, 227-243.	1.1	40
9	Strong Motion Deficits in Dyslexia Associated with DCDC2 Gene Alteration. Journal of Neuroscience, 2015, 35, 8059-8064.	1.7	35
10	Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Human Genetics, 2014, 133, 869-881.	1.8	32
11	GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia. Psychiatric Genetics, 2015, 25, 9-20.	0.6	32
12	The heritability of reading and reading-related neurocognitive components: A multi-level meta-analysis. Neuroscience and Biobehavioral Reviews, 2021, 121, 175-200.	2.9	30
13	Complex effects of dyslexia risk factors account for <scp>ADHD</scp> traits: evidence from two independent samples. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2017, 58, 75-82.	3.1	28
14	Beyond genes: A systematic review of environmental risk factors in specific reading disorder. Research in Developmental Disabilities, 2018, 82, 147-152.	1.2	28
15	Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. Genes, Brain and Behavior, 2018, 17, 70-81.	1.1	25
16	An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genetics, 2015, 134, 749-760.	1.8	20
17	Common variation within the SETBP1 gene is associated with reading-related skills and patterns of functional neural activation. Neuropsychologia, 2019, 130, 44-51.	0.7	19
18	GRIN2B predicts attention problems among disadvantaged children. European Child and Adolescent Psychiatry, 2015, 24, 827-836.	2.8	18

#	Article	IF	CITATIONS
19	A common genetic variant in <i>FOXP2</i> is associated with languageâ€based learning (dis)abilities: Evidence from two Italian independent samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 578-586.	1.1	18
20	Sluggish dorsally-driven inhibition of return during orthographic processing in adults with dyslexia. Brain and Language, 2018, 179, 1-10.	0.8	18
21	Putative Risk Factors in Developmental Dyslexia. Journal of Learning Disabilities, 2015, 48, 120-129.	1.5	13
22	Working memory mediates the effects of gestational age at birth on expressive language development in children Neuropsychology, 2017, 31, 475-485.	1.0	13
23	Monoamine oxidase A polymorphism moderates stability of attention problems and susceptibility to life stress during adolescence. Genes, Brain and Behavior, 2015, 14, 565-572.	1.1	10
24	The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia, 2019, 130, 52-58.	0.7	9
25	The role of READ1 and KIAA0319 genetic variations in developmental dyslexia: testing main and interactive effects. Journal of Human Genetics, 2017, 62, 949-955.	1.1	8
26	The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sciences, 2020, 10, 993.	1.1	8
27	From BDNF to reading: Neural activation and phonological processing as multiple mediators. Behavioural Brain Research, 2021, 396, 112859.	1.2	8
28	White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Experimental Brain Research, 2021, 239, 2725-2740.	0.7	6
29	Cumulative risk and protection effect of serotonergic genes on male antisocial behaviour: results from a prospective cohort assessed in adolescence and early adulthood. British Journal of Psychiatry, 2019, 214, 137-145.	1.7	5
30	Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sciences, 2021, 11, 722.	1.1	4
31	Animal models of developmental dyslexia: Where we are and what we are missing. Neuroscience and Biobehavioral Reviews, 2021, 131, 1180-1197.	2.9	3