List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423238/publications.pdf Version: 2024-02-01

	71061	85498
6,014	41	71
citations	h-index	g-index
141	141	6126
docs citations	times ranked	citing authors
	citations 141	6,01441citationsh-index141141

#	Article	IF	CITATIONS
1	The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes <i>De Novo</i> Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus. Eukaryotic Cell, 2013, 12, 665-676.	3.4	301
2	Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 470-480.	0.5	296
3	Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in <i>Phaeodactylum tricornutum</i> . Plant Physiology, 2015, 167, 118-136.	2.3	286
4	Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. Journal of Cell Biology, 2004, 167, 863-874.	2.3	235
5	The Biochemical Machinery of Plastid Envelope Membranes. Plant Physiology, 1998, 118, 715-723.	2.3	168
6	Oil Accumulation by the Oleaginous Diatom <i>Fistulifera solaris</i> as Revealed by the Genome and Transcriptome. Plant Cell, 2015, 27, 162-176.	3.1	149
7	Contribution of galactoglycerolipids to the 3â€dimensional architecture of thylakoids. FASEB Journal, 2014, 28, 3373-3383.	0.2	139
8	Glycerolipid transfer for the building of membranes in plant cells. Progress in Lipid Research, 2007, 46, 37-55.	5.3	134
9	The lipid metabolism in thraustochytrids. Progress in Lipid Research, 2019, 76, 101007.	5.3	119
10	Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Progress in Lipid Research, 2014, 54, 68-85.	5.3	118
11	Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proceedings of the United States of America, 2013, 110, 7506-7511.	3.3	117
12	The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annual Review of Genetics, 2012, 46, 233-264.	3.2	115
13	Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. FEBS Journal, 1999, 265, 990-1001.	0.2	114
14	Light Remodels Lipid Biosynthesis in <i>Nannochloropsis gaditana</i> by Modulating Carbon Partitioning between Organelles. Plant Physiology, 2016, 171, 2468-2482.	2.3	106
15	Plant lipidâ€associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant Journal, 2010, 61, 436-445.	2.8	105
16	Activation of the Chloroplast Monogalactosyldiacylglycerol Synthase MGD1 by Phosphatidic Acid and Phosphatidylglycerol. Journal of Biological Chemistry, 2010, 285, 6003-6011.	1.6	102
17	Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Letters, 2003, 544, 63-68.	1.3	96
18	Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature Communications, 2017, 8, 15885.	5.8	93

#	Article	IF	CITATIONS
19	The apicoplast: a new member of the plastid family. Trends in Plant Science, 2001, 6, 200-205.	4.3	90
20	Lipid synthesis and metabolism in the plastid envelope. Physiologia Plantarum, 1997, 100, 65-77.	2.6	85
21	Investigating mixotrophic metabolism in the model diatom <i>Phaeodactylum tricornutum</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160404.	1.8	85
22	The plant S -adenosyl-l -methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. FEBS Journal, 2002, 269, 240-248.	0.2	83
23	Plasmodium falciparum Apicoplast Drugs: Targets or Off-Targets?. Chemical Reviews, 2012, 112, 1269-1283.	23.0	81
24	AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex. Current Biology, 2016, 26, 627-639.	1.8	81
25	Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochemical Journal, 2006, 394, 197-205.	1.7	78
26	Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nature Chemical Biology, 2011, 7, 834-842.	3.9	74
27	Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga. Plant Physiology, 2017, 175, 1543-1559.	2.3	74
28	LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE, 2017, 12, e0182423.	1.1	74
29	Lipidomic Analysis of <i>Toxoplasma gondii</i> Reveals Unusual Polar Lipids. Biochemistry, 2007, 46, 13882-13890.	1.2	70
30	Role of phosphatidic acid in plant galactolipid synthesis. Biochimie, 2012, 94, 86-93.	1.3	68
31	A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis. Plant Physiology, 2017, 173, 742-759.	2.3	65
32	Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum. Marine Drugs, 2015, 13, 1317-1339.	2.2	64
33	Tight cohesion between glycolipid membranes results from balanced water–headgroup interactions. Nature Communications, 2017, 8, 14899.	5.8	61
34	ALA10, a Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine in the ER and Affects Chloroplast Lipid Composition in <i>Arabidopsis thaliana</i> . Plant Physiology, 2016, 170, 1300-1314.	2.3	60
35	Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Research, 2018, 35, 125-141.	2.4	55
36	Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist, 2016, 167, 254-267.	0.6	54

#	Article	IF	CITATIONS
37	The architecture of lipid droplets in the diatom Phaeodactylum tricornutum. Algal Research, 2019, 38, 101415.	2.4	52
38	Synthesis of Chloroplast Galactolipids in Apicomplexan Parasites. Eukaryotic Cell, 2002, 1, 653-656.	3.4	51
39	Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways. Journal of Lipid Research, 2010, 51, 81-96.	2.0	51
40	Identification of Plant-like Galactolipids in Chromera velia, a Photosynthetic Relative of Malaria Parasites. Journal of Biological Chemistry, 2011, 286, 29893-29903.	1.6	48
41	The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment. PLoS ONE, 2011, 6, e23784.	1.1	47
42	Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathogens, 2016, 12, e1005765.	2.1	47
43	Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Current Biology, 2019, 29, 968-978.e4.	1.8	45
44	Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Scientific Reports, 2015, 5, 15207.	1.6	43
45	Screening for Biologically Annotated Drugs That Trigger Triacylglycerol Accumulation in the Diatom <i>Phaeodactylum</i> . Plant Physiology, 2018, 177, 532-552.	2.3	43
46	Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Molecular Biology, 1999, 40, 373-386.	2.0	42
47	Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biology, 2018, 16, 137.	1.7	42
48	Do Galactolipid Synthases Play a Key Role in the Biogenesis of Chloroplast Membranes of Higher Plants?. Frontiers in Plant Science, 2018, 9, 126.	1.7	40
49	Production and Analysis of Perdeuterated Lipids from Pichia pastoris Cells. PLoS ONE, 2014, 9, e92999.	1.1	39
50	Thermoacclimation and genome adaptation of the membrane lipidome in marine <i>Synechococcus</i> . Environmental Microbiology, 2018, 20, 612-631.	1.8	39
51	Enhanced triacylglycerol production in the diatom Phaeodactylum tricornutum by inactivation of a Hotdog-fold thioesterase gene using TALEN-based targeted mutagenesis. Biotechnology for Biofuels, 2018, 11, 312.	6.2	39
52	Molecular Modeling and Site-directed Mutagenesis of Plant Chloroplast Monogalactosyldiacylglycerol Synthase Reveal Critical Residues for Activity. Journal of Biological Chemistry, 2005, 280, 34691-34701.	1.6	38
53	Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids. Plant Physiology, 2017, 175, 1407-1423.	2.3	38
54	The Mybâ€like transcription factor phosphorus starvation response (PtPSR) controls conditional P acquisition and remodelling in marine microalgae. New Phytologist, 2020, 225, 2380-2395.	3.5	38

#	Article	IF	CITATIONS
55	Detection of new protein domains using co-occurrence: application to <i>Plasmodium falciparum</i> . Bioinformatics, 2009, 25, 3077-3083.	1.8	37
56	Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference. Gene, 2004, 336, 163-173.	1.0	35
57	The Catalytic Site of Monogalactosyldiacylglycerol Synthase from Spinach Chloroplast Envelope Membranes. Journal of Biological Chemistry, 1995, 270, 5714-5722.	1.6	34
58	Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. Molecular BioSystems, 2012, 8, 2023.	2.9	34
59	Non-Enzymatic Synthesis of Bioactive Isoprostanoids in the Diatom <i>Phaeodactylum</i> following Oxidative Stress. Plant Physiology, 2018, 178, 1344-1357.	2.3	34
60	Fundamentals of massive automatic pairwise alignments of protein sequences: theoretical significance of Z-value statistics. Bioinformatics, 2004, 20, 534-537.	1.8	33
61	Enhanced Antimalarial Activity of Novel Synthetic Aculeatin Derivatives. Journal of Medicinal Chemistry, 2008, 51, 4870-4873.	2.9	31
62	Construction of non-symmetric substitution matrices derived from proteomes with biased amino acid distributions. Comptes Rendus - Biologies, 2005, 328, 445-453.	0.1	30
63	Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. Journal of Lipid Research, 2008, 49, 746-762.	2.0	27
64	New Insights on Thylakoid Biogenesis in Plant Cells. International Review of Cell and Molecular Biology, 2016, 323, 1-30.	1.6	27
65	Live single-cell transcriptional dynamics via RNA labelling during the phosphate response in plants. Nature Plants, 2021, 7, 1050-1064.	4.7	27
66	The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts. FASEB Journal, 2014, 28, 3114-3123.	0.2	26
67	Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Letters, 1994, 352, 307-310.	1.3	24
68	Relationship between acyl-lipid and sterol metabolisms in diatoms. Biochimie, 2020, 169, 3-11.	1.3	24
69	1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. Plant Physiology and Biochemistry, 1999, 37, 795-808.	2.8	23
70	A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities. BMC Bioinformatics, 2005, 6, 49.	1.2	23
71	Plastids with or without galactoglycerolipids. Trends in Plant Science, 2014, 19, 71-78.	4.3	23
72	Refolding from denatured inclusion bodies, purification to homogeneity and simplified assay of MGDG synthases from land plants. Protein Expression and Purification, 2003, 31, 79-87.	0.6	22

#	Article	IF	CITATIONS
73	Structural insights and membrane binding properties of <scp>MGD</scp> 1, the major galactolipid synthase in plants. Plant Journal, 2016, 85, 622-633.	2.8	22
74	Altitudinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, 2021, 12, 679428.	1.7	22
75	Chemogenomics: A Discipline at the Crossroad of High Throughput Technologies, Biomarker Research, Combinatorial Chemistry, Genomics, Cheminformatics, Bioinformatics and Artificial Intelligence Combinatorial Chemistry and High Throughput Screening, 2008, 11, 583-586.	0.6	21
76	Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts. Journal of Theoretical Biology, 2014, 361, 1-13.	0.8	21
77	Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer. Environmental Microbiology, 2018, 20, 3057-3068.	1.8	21
78	Identification of Phosphatin, a Drug Alleviating Phosphate Starvation Responses in Arabidopsis Â. Plant Physiology, 2014, 166, 1479-1491.	2.3	20
79	Unveiling membrane thermoregulation strategies in marine picocyanobacteria. New Phytologist, 2020, 225, 2396-2410.	3.5	20
80	The apicoplast: a key target to cure malaria. Current Pharmaceutical Design, 2012, 18, 3490-504.	0.9	20
81	Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?. Malaria Journal, 2006, 5, 110.	0.8	18
82	Membrane lipidomics for the discovery of new antiparasitic drug targets. Trends in Parasitology, 2011, 27, 496-504.	1.5	18
83	Inhibition of p-Aminobenzoate and Folate Syntheses in Plants and Apicomplexan Parasites by Natural Product Rubreserine. Journal of Biological Chemistry, 2012, 287, 22367-22376.	1.6	18
84	Interplay between Jasmonic Acid, Phosphate Signaling and the Regulation of Glycerolipid Homeostasis in Arabidopsis. Plant and Cell Physiology, 2019, 60, 1260-1273.	1.5	18
85	Plastidial acyl carrier protein Δ9â€desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in <i>Phaeodactylum tricornutum</i> . Plant Journal, 2021, 106, 1247-1259.	2.8	18
86	Sequencing, <i>De Novo</i> Assembly, and Annotation of the Complete Genome of a New Thraustochytrid Species, Strain CCAP_4062/3. Genome Announcements, 2018, 6, .	0.8	17
87	Primary Endosymbiosis: Emergence of the Primary Chloroplast and the Chromatophore, Two Independent Events. Methods in Molecular Biology, 2018, 1829, 3-16.	0.4	16
88	Stepwise Biogenesis of Subpopulations of Lipid Droplets in Nitrogen Starved Phaeodactylum tricornutum Cells. Frontiers in Plant Science, 2020, 11, 48.	1.7	16
89	C1 Metabolism Inhibition and Nitrogen Deprivation Trigger Triacylglycerol Accumulation in Arabidopsis thaliana Cell Cultures and Highlight a Role of NPC in Phosphatidylcholine-to-Triacylglycerol Pathway. Frontiers in Plant Science, 2016, 07, 2014.	1.7	15
90	LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell, 2021, 33, 2637-2661.	3.1	15

#	Article	IF	CITATIONS
91	Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum. BMC Bioinformatics, 2012, 13, 67.	1.2	14
92	Illumina and PacBio DNA sequencing data, de novo assembly and annotation of the genome of Aurantiochytrium limacinum strain CCAP_4062/1. Data in Brief, 2020, 31, 105729.	0.5	14
93	PDAT regulates PE as transient carbon sink alternative to triacylglycerol in <i>Nannochloropsis</i> . Plant Physiology, 2022, 189, 1345-1362.	2.3	14
94	Assessing functional annotation transfers with inter-species conserved coexpression: application to Plasmodium falciparum. BMC Genomics, 2010, 11, 35.	1.2	13
95	Metabolic transformation of microalgae due to light acclimation and genetic modifications followed by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Analyst, The, 2014, 139, 5945-5953.	1.7	13
96	Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis. Analytica Chimica Acta, 2016, 902, 1-7.	2.6	13
97	Multiplexed CRISPR/Cas9 editing of the longâ€chain acylâ€CoA synthetase family in the diatom <i>Phaeodactylum tricornutum</i> reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytologist, 2022, 233, 1797-1812.	3.5	13
98	Potential and limits of in silico target discovery—Case study of the search for new antimalarial chemotherapeutic targets. Infection, Genetics and Evolution, 2009, 9, 359-367.	1.0	12
99	Revisiting the expression and purification of MGD1, the major galactolipid synthase in Arabidopsis to establish a novel standard for biochemical and structural studies. Biochimie, 2013, 95, 700-708.	1.3	12
100	Lipid Droplets in Unicellular Photosynthetic Stramenopiles. Frontiers in Plant Science, 2021, 12, 639276.	1.7	12
101	Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. International Journal of Molecular Sciences, 2018, 19, 3085.	1.8	10
102	Mechanism of activation of plant monogalactosyldiacylglycerol synthase 1 (MGD1) by phosphatidylglycerol. Glycobiology, 2020, 30, 396-406.	1.3	10
103	Discovery of Compounds Blocking the Proliferation of Toxoplasma gondii and Plasmodium falciparum in a Chemical Space Based on Piperidinyl-Benzimidazolone Analogs. Antimicrobial Agents and Chemotherapy, 2014, 58, 2586-2597.	1.4	9
104	Biosynthesis of Long Chain Alkyl Diols and Long Chain Alkenols in <i>Nannochloropsis</i> spp. (Eustigmatophyceae). Plant and Cell Physiology, 2019, 60, 1666-1682.	1.5	9
105	The zoospores of the thraustochytridAurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions. Environmental Microbiology, 2020, 22, 1901-1916.	1.8	9
106	Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology, 2021, 185, 815-835.	2.3	9
107	Importance of diacylglycerol in glycerolipid biosynthesis by spinach chloroplast envelope membranes. Progress in Lipid Research, 1994, 33, 105-118.	5.3	8
108	EuPathDomains: The divergent domain database for eukaryotic pathogens. Infection, Genetics and Evolution, 2011, 11, 698-707.	1.0	8

#	Article	IF	CITATIONS
109	Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches. Frontiers in Plant Science, 2021, 12, 628684.	1.7	8
110	Origin of cyanobacterial thylakoids via a non-vesicular glycolipid phase transition and their impact on the Great Oxygenation Event. Journal of Experimental Botany, 2022, 73, 2721-2734.	2.4	7
111	Lipid Trafficking in Plant Photosynthetic Cells. Advances in Photosynthesis and Respiration, 2009, , 349-372.	1.0	7
112	The configuration space of homologous proteins: A theoretical and practical framework to reduce the diversity of the protein sequence space after massive all-by-all sequence comparisons. Future Generation Computer Systems, 2007, 23, 410-427.	4.9	6
113	Structure and enzymatic degradation of the polysaccharide secreted by Nostoc commune. Carbohydrate Research, 2022, 515, 108544.	1.1	6
114	Marine and Freshwater Plants: Challenges and Expectations. Frontiers in Plant Science, 2019, 10, 1545.	1.7	5
115	Grand Challenges in Microalgae Domestication. Frontiers in Plant Science, 2021, 12, 764573.	1.7	5
116	The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom. Photosynthesis Research, 2022, 153, 71-82.	1.6	5
117	Editorial [Hot Topic: Chemogenomics: A Discipline at the Crossroad of High Throughput Technologies, Biomarker Research, Combinatorial Chemistry, Genomics, Cheminformatics, Bioinformatics and Artificial Intelligence Chemogenomics (Guest Editor: Eric Marechal)]. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 582-582.	0.6	4
118	An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in Aurantiochytrium limacinum. Cells, 2021, 10, 2680.	1.8	4
119	The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. Frontiers in Plant Science, 2014, 5, 203.	1.7	3
120	Phylogeny and Sequence Space: A Combined Approach to Analyze the Evolutionary Trajectories of Homologous Proteins. The Case Study of Aminodeoxychorismate Synthase. Acta Biotheoretica, 2020, 68, 139-156.	0.7	2
121	The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results and Problems in Cell Differentiation, 2020, 69, 281-334.	0.2	2
122	The pharmacological screening process: the small molecule, the biological Screen, the robot, the signal and the information. , 2011, , 7-21.		1
123	Specific Role of Glycolipids in the Regular Stacking of Membranes Reconstituted from Thylakoid Lipid Extracts. Biophysical Journal, 2014, 106, 512a.	0.2	1
124	Chemical Genetics in Dissecting Membrane Glycerolipid Functions. Sub-Cellular Biochemistry, 2016, 86, 159-175.	1.0	1
125	Glycerolipid Biosynthesis and Chloroplast Biogenesis. Advances in Photosynthesis and Respiration, 2013, , 131-154.	1.0	1
126	Editorial: Lipids in Cyanobacteria, Algae, and Plants—From Biology to Biotechnology. Frontiers in Plant Science, 2021, 12, 834384.	1.7	1

#	Article	IF	CITATIONS
127	In silico Discovery of Chemotherapeutic Agents. , 2010, , 279-304.		Ο
128	From a Free-Living Cyanobacteria to an Obligate Endosymbiotic Organelle: Early Steps in Lipid Metabolism Integration in Paulinellidae. Plant and Cell Physiology, 2020, 61, 865-868.	1.5	0
129	Druggable Biochemical Targets: Facts and Fancies. , 2013, , 1-11.		Ο
130	Screening for Inhibitors of Chloroplast Galactolipid Synthesis Acting in Membrano and in Planta. Methods in Molecular Biology, 2014, 1056, 79-93.	0.4	0
131	Editorial: Ice and Snow Algae. Frontiers in Plant Science, 2022, 13, 868467.	1.7	0